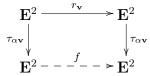
Read: Stahl, Chapters 2.2, 2.3, 2.4, 2.5, 3.1.

- 1. In this problem, use only the analytic definition of Euclidean geometry. Let \mathbf{v} be a unit vector in \mathbf{R}^2 , and define $r_{\mathbf{v}}(\mathbf{x}) = \mathbf{x} 2(\mathbf{x} \cdot \mathbf{v})\mathbf{v}$.
 - (a) Prove (analytically) that $r_{\mathbf{v}}$ is a Euclidean isometry.
 - (b) Prove that $r_{\mathbf{v}}$ is the reflection in a line *m* through the origin, and find an equation for that line (both in y = mx + b, and in parametric form).
 - (c) For an arbitrary $\alpha \in \mathbf{R}$, describe the isometry $f := \tau_{\alpha \mathbf{v}} \circ r_{\mathbf{v}} \circ \tau_{\alpha \mathbf{v}}^{-1}$ geometrically, and prove your description. This is the unique map that makes the following diagram commute:



What do $r_{\mathbf{v}}$ and $\tau_{\alpha \mathbf{v}} \circ r_{\mathbf{v}} \circ \tau_{\alpha \mathbf{v}}^{-1}$ have in common?

In the following three problems, you will prove a series of results stated in Chapter 2 of Stahl. For each problem, you are free to use results in Stahl that appear before it, provided you clearly state and cite them. The notation ρ_m denotes the reflection of \mathbf{E}^2 across the line m, and τ_{AB} denotes the translation of \mathbf{E}^2 that carries A to B.

- 2. Prove Proposition 2.2.7 in Stahl: Let m and n be two parallel straight lines. Let AB be a line segment that first intersects m and then n, that is perpendicular to both, whose length is twice the distance between m and n. Prove that $\rho_n \circ \rho_m = \tau_{AB}$.
- 3. Prove Lemma 2.3.1 in Stahl: Let the line segment AB be perpendicular to the line m. Prove that $\rho_m \circ \tau_{AB} = \rho_n$, where n is a line parallel to m.
- 4. Prove the second parts of Propositions 2.3.2 and 2.3.3 in Stahl: Let ρ be any reflection, τ be any translation, and R be any rotation of \mathbf{E}^2 . Prove that $\rho \circ \tau$ and $\rho \circ R$ are glide reflections. (Note: The facts that $\tau \circ \rho$ and $R \circ \rho$ also glide reflections constitute the first part of Propositions 2.3.2 and 2.3.3.)
- 5. In this problem, you may use the classification of Euclidean isometries as described in Theorem 2.4.3 of Stahl.
 - (a) Let m be a line in \mathbf{E}^2 . Describe all of the isometries of \mathbf{E}^2 that fix every point of m, and prove that your description is complete.
 - (b) Let P be a point of \mathbf{E}^2 . Describe all of the isometries of \mathbf{E}^2 that fix P, and prove that your description is complete.
- 6. Recall that the circle inversion in polar coordinates is the map $I_{O,k}$: $\mathbf{E}^2 \setminus O$ given by $I_{O,k}(r,\theta) = (k^2/r,\theta)$. Now, let $f(r,\theta)$: $(0,\infty) \times [0,2\pi)$ be an arbitrary function, and define the sets $\Gamma_0 := \{(r,\theta) \mid f(r,\theta) = 0\}$ and $\Gamma_1 := \{(r,\theta) \mid f(k^2/r,\theta) = 0\}$. Prove that $I_{O,k}(\Gamma_0) = \Gamma_1$.

- 7. Theorem 3.1.6 of Stahl says that $I_{C,k}$ is a conformal mapping of $\mathbf{E}^2 \setminus C$, that is, it preserves angles between paths. In this problem, we will prove this statement in a more rigorous and elegant fashion, using only the analytic methods we developed in class.
 - (a) Prove that for any angle θ , the matrix

$$B_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix}$$

is orthogonal.

- (b) Prove that, at any given point $(x, y) \neq (0, 0)$, the inversion $I'_{O,k}(x, y)$ is a scalar multiple of the matrix B_{θ} for some value of θ .
- (c) Prove that $I_{O,k}$ preserves angles between paths in $\mathbf{E}^2 \setminus O$.
- (d) For a vector $\mathbf{v} \in \mathbf{R}^2$, describe the transformation $\tau_{\mathbf{v}} \circ I_{O,k} \circ \tau_{\mathbf{v}}^{-1}$ geometrically, and prove your description. Draw a commutative diagram that shows how these maps are related. (Be careful: The domains of these maps are not quite all of \mathbf{E}^2 !)
- (e) Prove that the transformation $I_{C,k}$ preserves angles between paths in $\mathbf{E}^2 \setminus C$.