- 1. Let $f, g \in \text{Isom}(\mathbf{H}^2)$ be orientation-preserving, and suppose that f is parabolic. Prove that either there exists $x \in \mathbb{R}$ such that f and g both fix x, or $f^n g$ is an isometry of hyperbolic type for some value of n. [*Hint*: Use conjugation and "standard position."]
- 2. For $n \in \mathbb{N}$, a group element f has order n if n is the smallest positive integer such that $f^n = 1$. If such an n exists, then f has finite order, otherwise it has infinite order.
 - (a) Prove that conjugate elements in any group have the same order.
 - (b) Let $f \in \text{Isom}(\mathbf{H}^2)$ be orientation-preserving. Prove that if f has finite order, then f is elliptic.
 - (c) Suppose that $f \in \text{Isom}(\mathbf{H}^2)$ is elliptic of order 5. Find all possible value of $\tau(f)$. [*Hint*: Use conjugation and basic properties of 2×2 rotation matrices.]
- 3. Show that the connected sum of two projective planes is homeomorphic to the Klein bottle. You may use "cut-and-paste" arguments.
- 4. Recall that a side-paring takes a polygon and pairs its sides in either an orientationpreserving or an orientation-reversing manner.
 - (a) Find all possible ways to side-pair a square, up to rotational symmetry of the square.
 - (b) For each side-pairing you found in Part (a), compute the Euler characteristic of the resulting surface S, and identify S has either a sphere, torus, Klein bottle, or projective plane.
- 5. Let S be the surface obtained by identifying opposite sides of an 18-gon in an orientationpreserving manner, that is, with the defining relation $a_1a_2\cdots a_9a_1^{-1}a_2^{-1}\cdots a_9^{-1}$. Find with proof either a connected sum of tori T^2 and/or projective planes P^2 that is homeomorphic to S.
- 6. Prove that $P^2 \# T^2$ is homeomorphic to $P^2 \# P^2 \# P^2$.