1. Define the triangle $T_{i j k} \subset \mathbb{R}^{n}$ by

$$
T_{i j k}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i}+x_{j}+x_{k}=1, x_{i}, x_{j}, x_{k} \geq 0, x_{\ell}=0 \text { for } \ell \neq i, j, k\right\}
$$

In this problem, we prove that in \mathbb{R}^{n}, the intersections of the $T_{i j k}$ are precisely given by the set intersections of their indices.
(a) Prove that $T_{123} \cap T_{456}=\emptyset$.
(b) Prove that $T_{123} \cap T_{345}$ is a common vertex of the two triangles.
(c) Prove that $T_{123} \cap T_{234}$ is a common edge of the two trianges.
2. Let S_{1} and S_{2} be surfaces. Use the cut-and-paste description of the connected sum to prove that $\chi\left(S_{1} \# S_{2}\right)=\chi\left(S_{1}\right)+\chi\left(S_{3}\right)-2$.
3. Recall that the fundamental moves on polygon complexes are adding/removing midpoints, adding/removing dividing edges in polygons, and adding/removing hanging edges.
(a) Prove that an n-gon may be subdivided into triangles using a sequence of fundamental moves.
(b) Prove that a triangle may be barycentrically subdivided using a sequence of fundamental moves.
4. An abstract regular polyhedron is a way of constructing the 2 -sphere, S^{2}, as a polygonal complex such that each polygonal has n sides each vertex is incident to m polygons. Use the combinatorial Gauss-Bonnet theorem to classify the regular polyhedra, with proof.
5. A trivalent polyhedron is a polygon complex homeomorphic to S^{2} such that exactly three polygons meet at any vertex. Prove that there are only finitely many trivalent polyhedra that can be made from triangles, squares, and pentagons.
6. A triangle is commensurable if its three angles are of the form π / n_{i}, where $n_{i} \in \mathbb{N}$.
(a) Find (with proof) the area of the smallest possible commensurable hyperbolic triangle.
(b) Let S be a surface of genus $g \geq 2$. Prove that S cannot be smoothly triangulated by either spherical or Euclidean triangles.
(c) Prove that a smooth triangulation of a surface of genus $g \geq 2$ by commensurable triangles contains at most $168(g-1)$ triangles.

