1. Define the triangle $T_{ijk} \subset \mathbb{R}^n$ by

 $T_{ijk} = \{ (x_1, \dots, x_n) \mid x_i + x_j + x_k = 1, \ x_i, x_j, x_k \ge 0, \ x_\ell = 0 \text{ for } \ell \neq i, j, k \}.$

In this problem, we prove that in \mathbb{R}^n , the intersections of the T_{ijk} are precisely given by the set intersections of their indices.

- (a) Prove that $T_{123} \cap T_{456} = \emptyset$.
- (b) Prove that $T_{123} \cap T_{345}$ is a common vertex of the two triangles.
- (c) Prove that $T_{123} \cap T_{234}$ is a common edge of the two trianges.
- 2. Let S_1 and S_2 be surfaces. Use the cut-and-paste description of the connected sum to prove that $\chi(S_1 \# S_2) = \chi(S_1) + \chi(S_3) 2$.
- 3. Recall that the fundamental moves on polygon complexes are adding/removing midpoints, adding/removing dividing edges in polygons, and adding/removing hanging edges.
 - (a) Prove that an *n*-gon may be subdivided into triangles using a sequence of fundamental moves.
 - (b) Prove that a triangle may be barycentrically subdivided using a sequence of fundamental moves.
- 4. An abstract regular polyhedron is a way of constructing the 2-sphere, S^2 , as a polygonal complex such that each polygonal has n sides each vertex is incident to m polygons. Use the combinatorial Gauss-Bonnet theorem to classify the regular polyhedra, with proof.
- 5. A trivalent polyhedron is a polygon complex homeomorphic to S^2 such that exactly three polygons meet at any vertex. Prove that there are only finitely many trivalent polyhedra that can be made from triangles, squares, and pentagons.
- 6. A triangle is *commensurable* if its three angles are of the form π/n_i , where $n_i \in \mathbb{N}$.
 - (a) Find (with proof) the area of the smallest possible commensurable hyperbolic triangle.
 - (b) Let S be a surface of genus $g \ge 2$. Prove that S cannot be smoothly triangulated by either spherical or Euclidean triangles.
 - (c) Prove that a smooth triangulation of a surface of genus $g \ge 2$ by commensurable triangles contains at most 168(g-1) triangles.