1. In our first model of air resistance, the resistance force depends only on the velocity. This leads to the differential equation $m v^{\prime}=-m g-r v$, where $-m g$ is the gravitation force and $R(v)=-r v$ is the air resistance force. For an object that drops a considerable distance, such as a parachutist, there is a dependence on the altitude as well. It is reasonable to assume that the resistance force is proportional to air pressure, as well as velocity. Furthermore, to a first-order approximation, the air pressure varies exponentially with the altitude (i.e., it is proportional to $e^{-a x}$, where a is a constant and x is the altitude). Propose and justify (but do not solve) a differential equation model (in x instead of v) for the velocity of a falling object subject to such a resistance force. Recall that $x^{\prime}=v$.
2. The population of snakes on a plane is believed to be growing according to the logistic equation:

$$
y^{\prime}=r y(1-y / M) \quad \text { Solution } y(t)=\frac{M}{1+C e^{-r t}} .
$$

The maximum number of snakes that can live on the plane is 1000 . Initially, the population is 500 , and at this time, the rate of increase of snakes is 100 per month.
(a) How many months until the population reaches 90% of the maximum?
(b) Sketch this solution curve in the (t, y)-plane, and the two steady-state solutions.
3. Let $T(t)$ be the temperature of a cup of water at time t, in hours. Newton's law of cooling says that at any t, the rate of change $T^{\prime}(t)$ is proportional to the difference in ambient temperature and $T(t)$, which can be described by the differential equation

$$
T^{\prime}=k(A-T)
$$

The ambient temperature A need not be constant; suppose it varies sinusoidally with time with a period of 24 hours. At 6am, the ambient temperature is at its minimum of 40° and at 6 pm , its maximum of 60°.
(a) Write down a differential equation (that is, find $A(t))$ that models the temperature of the cup of water. Let $t=0$ be noon.
(b) Give a physical and mathematical explanation why there is no steady-state solution.
(c) The long-term behavior of a solution to this equation is a sinusoid; explain why. What do you expect the period, amplitude, and phase shift of this solution to be (qualitively) compared to $A(t)$?
(d) Sketch a graph of several solutions to this equation corresponding to different initial temperatures.
(e) Suppose that instead of measuring the temperature of a cup of water, $T(t)$ measures the temperature of a pond. What parameters would this change in the differential equation? What would your graphs in Part (d) look like? Sketch solutions corresponding to the same initial conditions.
4. A population is originally 100 individuals, but because of the combined effects of births and deaths, it triples each hour.
(a) Make a table of population size of $t=0$ to 5 where t is measured in hours.
(b) Write a difference equation modeling the population growth two different ways: first by expressing P_{t+1} in terms of P_{t}, and then expressing ΔP in terms of P_{t}.
(c) What, if anything, can you say about the birth and death rates for this population?
5. In the early stages of the development of a frog embryo, cell division occurs at a fairly regular rate. Suppose you observe that all cells divide, and hence the number of cells doubles, roughly every half-hour.
(a) Write down a difference equation modeling this situation. You should specify how much real-world time is represented by an increment of 1 in t. Suppose the initial number of cells is 1 .
(b) Produce a table and graph of the number of cells as a function of t.
(c) Further observation shows that after 10 hours, the embryo has around 30,000 cells. Is this roughly consistent with your model? What biological conclusions and/or questions does this raise?
6. Suppose the size of a certain population is affected only by birth, death, immigration, and emigration - each of which occurs in a yearly amount proportional to the size of a population. That is, if the population is P, within a time period of 1 year, the number of births is $b P$, deaths is $d P$, immigrants is $i P$, and emigrants is $e P$ for some b, d, i, and e. Show that the population can be modeled by $\Delta P=r P$ and give a formula for r.
7. Four of the many common ways of writing the discrete logistic growth equation are

$$
\begin{array}{ll}
\Delta P=r P(1-P / K), & \Delta P=s P(K-P), \\
\Delta P=t P-u P^{2}, & P_{t+1}=v P_{t}-w P_{t}^{2}
\end{array}
$$

Write each of the following in all four of these forms.
(a) $P_{t+1}=P_{t}+.2 P_{t}\left(10-P_{t}\right)$
(b) $P_{t+1}=2.5 P_{t}-.2 P_{t}^{2}$

