Read: Algebraic and Discrete Mathematical Methods for Modern Biology, Chapter 13 (pdf is on Blackboard): RNA Secondary Structures: Combinatorial Models and Folding Algorithms, by Q. He, M. Macauley, and R. Davies. Pages 321–345.

1. Consider the following fold of the RNA sequence GGGACCUUCCCCAAGGGGGGG:

- (i) Draw the corresponding arc diagram.
- (ii) Write out this secondary structure in point-bracket notation.
- (iii) Draw the corresponding Motskin path.
- 2. Consider the following fold of the same RNA sequence from the previous problem:

$$^{5'\text{-end}}$$
 G
 G

- (i) Draw the corresponding arc diagram. What is the smallest k for which this is k-noncrossing .
- (ii) What if the first G bonds with the C "directly below" it (vertex 17). Does this change the k from the previous part?
- (iii) Draw a picture of a folded RNA strand (like the one above) that is 4-noncrossing but not 3-noncrossing.
- 3. Consider the RNA sequence $\mathbf{b} = \mathbf{G} \, \mathbf{G} \, \mathbf{A} \, \mathbf{C} \, \mathbf{C} \, \mathbf{U} \, \mathbf{U} \, \mathbf{C} \, \mathbf{C}$. Find all possible ways that it can fold into a secondary structure S, without leaving any "allowed" unpaired bases. Draw the arc diagram and a "realistic sketch" of the folded RNA strand. Compute the energy score $E(\mathbf{b}, S)$ of each.

4. Use dynamic programming to fill out the remaining table to find the optimal fold of the RNA sequence $\mathbf{b} = \mathbf{G} \, \mathbf{G} \, \mathbf{A} \, \mathbf{C} \, \mathbf{C} \, \mathbf{U} \, \mathbf{U} \, \mathbf{C} \, \mathbf{C}$. Then, do the trace-back step to recover a structure that achieves this maximum energy score.

	G	G	G	Α	\mathbf{C}	\mathbf{C}	U	U	\mathbf{C}	\mathbf{C}
\mathbf{G}	0	0	0	0						
G G G		0	0	0	0					
G			0	0	0	0				
$_{\mathrm{C}}^{\mathrm{A}}$				0	0	0	0			
\mathbf{C}					0	0	0	0		
С						0	0	0	0	
U							0	0	0	0
U								0	0	0
\mathbf{C}									0	0
\mathbf{C}										0

5. The *Knudsen-Hein grammar* is a stochastic context free grammar (SCFG) defined by the following production rules:

$$S \longrightarrow LS(p_1) | L(q_1)$$

 $L \longrightarrow dFd'(p_2) | s(q_2)$
 $F \longrightarrow dFd'(p_3) | LS(q_3)$

Construct a derivation the hairpin loop ssddsssd'd'ss, and compute its probability.