Math 4500 worksheet: Reverse engineering of polynomial dynamical systems

Goal. Find all models $F=\left(f_{1}, \ldots, f_{n}\right)$: that fit the partial data:

$$
\begin{aligned}
& \text { Input states: } \mathbf{s}_{1}, \ldots, \mathbf{s}_{m} \in \mathbb{F}^{n} \\
& \text { Output states: } \mathbf{t}_{1}, \ldots, \mathbf{t}_{m} \in \mathbb{F}^{n} \quad \text { with } F\left(\mathbf{s}_{i}\right)=\mathbf{t}_{i} \text {. }
\end{aligned}
$$

Here, each $f_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ can be assumed to be a Boolean polynomial, and updating each of these functions synchronously yields the finite dynamical systems (FDS) map $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$. That is, the equation $F\left(\mathbf{s}_{i}\right)=\mathbf{t}_{i}$ means

$$
F\left(\mathbf{s}_{i}\right)=\left(f_{1}\left(\mathbf{s}_{i}\right), f_{2}\left(\mathbf{s}_{i}\right), \ldots, f_{n}\left(\mathbf{s}_{i}\right)\right)=\left(t_{i 1}, t_{i 2}, \ldots, t_{i n}\right)=\mathbf{t}_{i}
$$

The set of all solutions (models) is called the model space:

$$
F_{1} \times \cdots \times F_{n}=\left\{\left(f_{1}, \ldots, f_{n}\right) \mid f_{j}\left(\mathbf{s}_{i}\right)=t_{i j}\right\}
$$

To find all solutions, we find each F_{j} separately. Note that F_{j} is the set of all local functions at node j that fit the data:

$$
F_{j}=\left\{f_{j}: f_{j}\left(\mathbf{s}_{1}\right)=t_{i j}, \ldots, f_{j}\left(\mathbf{s}_{m}\right)=t_{i m}\right\}
$$

To find F_{j}, we use that fact that it can be written as

$$
F_{j}=f_{j}+I=\left\{f_{j}+h: h \in I\right\}
$$

where f_{j} is any particular function in F_{j}, and I is the set of polynomials that vanish on the data:

$$
I=\left\{h: h\left(\mathbf{s}_{i}\right)=0 \text { for all } i=1, \ldots, m\right\} .
$$

Thus, to find F_{j}, we need to do two things:
(1) Find the ideal I;
(2) Find any polynomial f_{j} that fits the data.

1. Finding I : Define $I\left(\mathbf{s}_{i}\right)$ to be the set of polynomials that vanish on \mathbf{s}_{i} :

$$
\begin{aligned}
I\left(\mathbf{s}_{i}\right) & =\left\{\text { all polynomials } h_{i} \text { such that } h_{i}\left(\mathbf{s}_{i}\right)=0\right\} \\
& =\left\{\left(x_{1}-s_{i 1}\right) g_{1}(\mathbf{x})+\left(x_{2}-s_{i 2}\right) g_{2}(\mathbf{x})+\cdots\left(x_{n}-s_{i n}\right) g_{n}(\mathbf{x})\right\} \\
& =\left\langle x_{1}-s_{i 1}, x_{2}-s_{i 2}, \ldots, x_{n}-s_{i n}\right\rangle
\end{aligned}
$$

Clearly, the set I of polynomials that vanish on all $\mathbf{s}_{i}($ for $i=1, \ldots m$) is simply

$$
I=\bigcap_{i=1}^{m} I\left(\mathbf{s}_{i}\right)
$$

2. Finding f_{j} : This method uses the "Chinese Remainder Theorem" for rings, though this is "hidden" in the background.

For each data point $\mathbf{s}_{i} ; i=1, \ldots, m$, we'll construct an " r-polynomial" that has the following property:

$$
r_{i}(\mathbf{x})= \begin{cases}1 & \mathbf{x}=\mathbf{s}_{i} \tag{1}\\ 0 & \mathbf{x} \neq \mathbf{s}_{i}\end{cases}
$$

Once we have the r-polynomials, then the polynomial $f_{j}(\mathbf{x})$ we seek will be

$$
f_{j}(\mathbf{x})=t_{1 j} r_{1}(\mathbf{x})+t_{2 j} r_{2}(\mathbf{x})+\cdots+t_{m j} r_{m}(\mathbf{x})
$$

So, how do we find these r-polynomials? There are likely many such polynomials that work, but here's a sure-fire way to construct them:

$$
r_{i}(\mathbf{x})=\prod_{\substack{k=1 \\ k \neq i}}^{m} b_{i k}(\mathbf{x})
$$

where

$$
b_{i k}(\mathbf{x})=\left(s_{i \ell}-s_{k \ell}\right)^{p-2}\left(x_{\ell}-s_{k \ell}\right)
$$

and ℓ is the first coordinate in which \mathbf{s}_{i} and \mathbf{s}_{k} differ.
This looks horrible! (But it's not too bad.) Let's try it. Consider the following time series in a 3 -node system over \mathbb{Z}_{5} :

For reference, here are the input vectors \mathbf{s}_{i} and output vectors \mathbf{t}_{i} :

$$
\begin{array}{ll}
\mathbf{s}_{1}=\left(s_{11}, s_{12}, s_{13}\right)=(2,0,0), & \mathbf{t}_{1}=\left(t_{11}, t_{12}, t_{13}\right)=(4,3,1) \\
\mathbf{s}_{2}=\left(s_{21}, s_{22}, s_{23}\right)=(4,3,1), & \mathbf{t}_{2}=\left(t_{21}, t_{22}, t_{23}\right)=(3,1,4) \\
\mathbf{s}_{3}=\left(s_{31}, s_{32}, s_{33}\right)=(3,1,4), & \mathbf{t}_{3}=\left(t_{31}, t_{32}, t_{33}\right)=(0,4,3)
\end{array}
$$

Note that \mathbf{s}_{1} differs from \mathbf{s}_{2} and \mathbf{s}_{3} in the $\ell=1$ coodinate, so this ℓ will work for each of f_{1}, f_{2}, and f_{3}.

Let's compute the first r-polynomial, which is:

$$
r_{1}(\mathbf{x})=b_{12}(\mathbf{x}) b_{13}(\mathbf{x})
$$

Since we are working in \mathbb{Z}_{5}, we are taking the remainder of everything modulo 5. Particularly useful identities are: $0=5,-1=4,-2=3,-3=2$, and $-4=1$. Using our formulas for $b_{i j}(x)$, we compute:

$$
\begin{aligned}
& b_{12}(\mathbf{x})=\left(s_{11}-s_{21}\right)^{3}\left(x_{1}-s_{21}\right)=(2-4)^{3}\left(x_{1}-4\right)=-8\left(x_{1}+1\right)=2 x_{1}+2 \\
& b_{13}(\mathbf{x})=\left(s_{11}-s_{31}\right)^{3}\left(x_{1}-s_{31}\right)=(2-3)^{3}\left(x_{1}-3\right)=-x_{1}+3=4 x_{1}+3
\end{aligned}
$$

Therefore, the first r-polynomial is

$$
r_{1}(\mathbf{x})=b_{12}(\mathbf{x}) b_{13}(\mathbf{x})=\left(2 x_{1}+2\right)\left(4 x_{1}+3\right)=8 x_{1}^{2}+14 x_{1}+6=3 x_{1}^{2}+4 x_{1}+1
$$

Your turn! Compute $r_{2}(\mathbf{x})$ and $r_{3}(\mathbf{x})$, and then use these to find $f_{1}(\mathbf{x}), f_{2}(\mathbf{x})$, and $f_{3}(\mathbf{x})$. Note that you will need to compute the polynomials $b_{21}(\mathbf{x}), b_{23}(\mathbf{x}), b_{31}(\mathbf{x})$, and $b_{32}(\mathbf{x})$.

Before proceeding, check to make sure that each of these polynomials fits the data. In other words, for each $j=1,2,3$, verify (do this now!) that

$$
f_{j}\left(\mathbf{s}_{1}\right)=f_{j}(2,0,0)=s_{1 j}, \quad f_{j}\left(\mathbf{s}_{2}\right)=f_{j}(4,3,1)=s_{2 j}, \quad f_{j}\left(\mathbf{s}_{3}\right)=f_{j}(3,1,4)=s_{3 j}
$$

To explore why this works, go back a step further, and verify that each r-polynomial satisfies the equation from (1).

Now that we have found f_{1}, f_{2}, and f_{3}, our "particular" solution that fits the data is $f=$ (f_{1}, f_{2}, f_{3}), and our "general solution" (the model space) is the set

$$
\begin{aligned}
F_{1} \times \cdots \times F_{n} & =f+(I \times \cdots \times I) \\
& =\left(f_{1}+I, \ldots, f_{n}+I\right)
\end{aligned}
$$

Further exploration. In this project, we will investigate a simple Boolean FDS, explore its phase space, and attempt to reverse engineer it given partial data.

Consider the following polynomial dynamical system:

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{AND}\left(x_{1}, x_{2}\right)=x_{1} x_{2} \\
& f_{2}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{AND}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3} \\
& f_{3}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{AND}\left(x_{1}, x_{2}\right)=x_{1} x_{2}
\end{aligned}
$$

This is called an AND-network because the Boolean functions can be written as logical AND functions.

Go to the Analysis of Dynamic Algebraic Models (ADAM) toolbox, at http: //adam. plantsimlab. org/. Enter the functions above into the "Model Input" box and click the "Analyze" button. The state space should look like this:

This graph literally encodes the entire function $F=\left(f_{1}, f_{2}, f_{3}\right): \mathbb{F}_{2}^{3} \longrightarrow \mathbb{F}_{2}^{3}$.
Let's try to reverse engineer this network given partial data. In particular, let's suppose that all we know is the following "piece" of the state space (elephant):

Follow the steps of the above example to find all FDS maps that fit this data. Naturally, you could "cheat" and use the OR functions above for f_{1}, f_{2}, and f_{3}, but try the r-polynomial method. Do you get the same particular solution?

