## Math 4500 Worksheet: RNA folding April 2015

A langauge consists of a set of finite strings that can be constructed from an alphabet $\Sigma$ of terminal symbols (lowercase) and "temporary" nonterminal symbols (uppercase), according to production rules.

In a context free grammar (CFG), all rules have the form

$$
A \longrightarrow \alpha A \beta
$$

where $\alpha$ and $\beta$ are strings (possibly empty).
A derivation of a string is a set of steps that creates it from the start symbol $S$. A left derivation is one where rules are always applied to nonterminals in a left-to-right order. A right derivation is defined similarly.

Every derivation can be visualized using a parse tree.

## Exercises.

(1) Construct a regular grammar that generates the language $\left\{b^{n} a \mid n \geq 0\right\}$. Try to construct a regular grammar that generates the languge $\left\{a b^{n} a \mid n \geq 0\right\}$. What goes wrong?
(2) Consider the following grammar:

$$
S \longrightarrow S S \mid a
$$

Show that this grammar is ambigious by finding two left derivations of the string $\alpha=a a a$ that have different parse trees.
(3) The Knudsen-Hein grammar is a stochastic context free grammar (SCFG) definedy by the following production rules:

$$
\begin{aligned}
& S \longrightarrow L S\left(p_{1}\right) \mid L\left(q_{1}\right) \\
& L \longrightarrow d F d^{\prime}\left(p_{2}\right) \mid s\left(q_{2}\right) \\
& F \longrightarrow d F d^{\prime}\left(p_{3}\right) \mid s\left(q_{3}\right)
\end{aligned}
$$

Below is a left derivation of the string $\alpha=d d s s d^{\prime} s d^{\prime}$ :

$\Downarrow q_{1}$

(a) Construct a parse tree for $\alpha=d d s s d^{\prime} s d^{\prime}$.
(b) Compute the right derivation of the same string, $\alpha=d d s s d^{\prime} s d^{\prime}$ and draw the corresponding (right) parse tree.
(4) Use the Knudsen-Hein grammar to construct a derivation the hairpin loop $s s d d s s s d^{\prime} d^{\prime} s s$, and compute its probability.
(5) Modify the rules to make the minimum loop size $j-i \geq 4$ and repeat the above problem.
(6) Allowing arc lengths of length $\lambda=3$, there 6 legal folds of the sequence $\mathbf{b}=$ GGACUGC. One of these is the trivial unfolded structure. The other 5 are shown below:

$P\left(S_{1}\right)=p_{2}^{2} q_{1}^{3} q_{2}^{3} q_{3}^{2}$

$P\left(S_{2}\right)=p_{1}^{3} p_{2} q_{1}^{2} q_{2}^{5} q_{3}$

$P\left(S_{4}\right)=p_{1}^{3} p_{2} q_{1}^{2} q_{2}^{5} q_{3}$

$P\left(S_{5}\right)=p_{1}^{3} p_{2} q_{1}^{2} q_{2}^{5} q_{3}$

$P\left(S_{6}\right)=p_{1}^{3} p_{2} q_{1}^{2} q_{2}^{5} q_{3}$
Find a derivation for each of these using the Knudsen Hein grammar and construct its parse tree.
(7) Consider the following "mystery grammar" from (Durbin, 1998):

$$
\begin{aligned}
& S \longrightarrow a A u|c A g| g A c \mid u A a \\
& A \longrightarrow a B u|c B g| g B c \mid u B a \\
& B \longrightarrow a C u|c C g| g C c \mid u C a \\
& C \longrightarrow \text { gaaa } \mid \text { gcaa }
\end{aligned}
$$

What is the language $L$ derived from this grammar? Describe it in terms of RNA secondary structures.

