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Introduction

Consider a population of two species, e.g., foxes (“predator”) and rabbits (“prey”).

Pt � size of prey.

Qt � size of predator.

The change in population size of each is a function of both population sizes:

∆P � F pP,Qq , ∆Q � GpP,Qq .

Question

What would happen if the predator or the prey disappeared?

Prey, without predators: ∆P � rpPp1 � Pt{Mqq.

Predators, without prey: ∆Q � �uQ, where u P p0, 1q is per-capita death rate.

Simple predator-prey model#
∆P � rPp1 � P{Mq � sPQ

∆Q � �uQ � vPQ
r , s, u, v ,K ¡ 0, u   1
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Predator-prey model

Alternate form#
Pt�1 � Ptp1 � rp1 � P{Mqq � sPtQt

Qt�1 � p1 � uqQt � vPtQt

r , s, u, v ,K ¡ 0, u   1

The �sPQ and vPQ are called mass-action terms. Roughly speaking:

�sPQ describes a negative effect of the predator-prey interaction on the prey,

vPQ describes a positive effect of the predator-prey interaction on the predator.

Qualitatively, larger values of s and v indicate stronger predator-prey interaction.

We can plot the solutions of these equations several ways:

time plots: Pt vs. t, and Qt vs. t

phase plots: Qt vs. Pt .
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Time plots and phase plots

Consider the following predator-prey model:#
Pt�1 � Ptp1 � 1.3p1 � Ptqq � .5PtQt

Qt�1 � .3Qt � 1.6PtQt

Solutions can be graphed using a time plot (left) or a phase plot (right):
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Equilibria

To find steady-state population(s), we set Pt � Pt�1 � P� and Qt � Qt�1 � Q�.#
Pt�1 � Ptp1 � 1.3p1 � Ptqq � .5PtQt

Qt�1 � .3Qt � 1.6PtQt

ù

#
P� � P�p1 � 1.3p1 � P�qq � .5P�Q�

Q� � .3Q� � 1.6P�Q�

Via simple algebra, this reduces to the following system#
0 � P�p1.3 � 1.3P� � .5Q�q

0 � Q�p�.7 � 1.6P�q

If Q� � 0, then P� � 0 or P� � 1.

Alternatively, P� � .4375, which would force Q� � 1.4625.

Thus, there are three equilibria:

pP�,Q�q � p0, 0q, p1, 0q, p.4375, 1.4625q.
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Equilibria and nullclines
For the general predator-prey model:#

Pt�1 � Ptp1 � rp1 � Pt{Mqq � sPtQt

Qt�1 � p1 � uqQt � vPtQt

r , s, u, v ,K ¡ 0, u   1

the equilibrium equations (set Pt � Pt�1 � P� and Qt � Qt�1 � Q�) are#
0 � P�prp1 � P�q � sQ�q

0 � Q�p�u � vP�q.

For Equation 2 to be satisfied, Q� � 0 or �u � vP� � 0.

Furthermore, Equation 1 is satisfied if P� � 0 or rp1 � P�q � sQ� � 0.

By simple algebra, we get three equilibria:

pP�,Q�q � p0, 0q, p1, 0q,
�u
v
,
r

s

�
1 �

u

v

�	
.

A nullcline is a line on which either ∆P � 0 or ∆Q � 0. In our example:

P � 0, Q �
r

s
p1 � Pq, Q � 0, P �

u

v
.

M. Macauley (Clemson) Predator-prey models Math 4500, Spring 2015 6 / 11

mailto:macaule@clemson.edu


Nullclines

We can plot the nullclines on the PQ-plane to help visualize the dynamics.

P

Q

Q � r
s
p1 � Pqr

s

P � u
v

∆Q�0
1

∆P�0


 





∆P   0
∆Q   0

∆P   0
∆Q ¡ 0

∆Q ¡ 0
∆P ¡ 0

∆P ¡ 0
∆Q   0

∆P ¡ 0 occurs below Q � r
s
p1 � Pq.

∆Q ¡ 0 occurs to the right of P � u
v

.

Do you see how we determine the direction of the green arrows? Can we tell whether
it spirals inward or outward?
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Nullclines

Remark

Changing r or s doesn’t affect the Q-nullcline.

P

Q

Q � r
s
p1 � Pqr

s

P � u
v

∆Q�0
1

∆P�0


 



pP�,Q�q

Suppose the predator was an insect and the prey was an agricultural crop.

One might want to introduce a new crop variety with higher r , to try to “outgrow”
the predator.

Unfortunately, this won’t work: P� is unchanged, but Q� increases. (Why?)
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Linearization

Suppose pP�,Q�q is a fixed point whose stability we wish to understand.

We can plug the following “perturbation” back into the original system:

Pt � P� � pt , Pt�1 � P� � pt�1 , Qt � Q� � qt , Qt�1 � Q� � qt�1 .

Consider the fixed point pP�,Q�q � p.4375, 1.4625q of our previous example.
Plugging

Pt � .4375�pt , Pt�1 � .4375�pt�1 , Qt � 1.4625�qt , Qt�1 � 1.4625�qt�1 .

into

#
Pt�1 � Ptp1 � 1.3p1 � Ptqq � .5PtQt

Qt�1 � .3Qt � 1.6PtQt

and simplifying yields#
pt�1 � .43125pt � .21875qt � 1.3p2

t � .5ptqt

qt�1 � 2.34pt � qt � 1.6ptqt

For small perturbations ppt , qtq, we can neglect the nonlinear terms (e.g., p2
t , q2

t , and
ptqt) which are � 0, leaving a linear system pt�1 � Apt .
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Linearization (cont.)

Thus, given a small perturbation ppt , qtq at time t, it can be described at time t � 1
by a linear equation pt�1 � Apt :�

pt�1

qt�1

�
�

�
.43125 �.21875

2.34 1

� �
pt
qt

�
.

The eigenvalues of A are λ � .7156 � .6565i , which have norm

|λ| �
a
p.7156q2 � p.6565q2 � .9711   1 .

Thus, this perturbation from the steady-state is shrinking. The population will spiral
back into the steady-state pP�,Q�q � p.4375, 1.4625q.

Types of equilibrium points

|λ1|   1, |λ2|   1, stable

|λ1| ¡ 1, |λ2| ¡ 1, unstable

|λ1|   1, |λ2| ¡ 1, saddle

M. Macauley (Clemson) Predator-prey models Math 4500, Spring 2015 10 / 11

mailto:macaule@clemson.edu


Other interaction models

Competition: 2 species fill the same niche in an environment.#
∆P � rPp1 � pP � Qq{Kq

∆Q � rQp1 � pP � Qq{Kq

Question: Does one species “win”? Or can the co-exist?

Competition with predator/prey:

#
∆P � rPp1 � pP � Qq{Kq � sPQ

∆Q � rQp1 � pP � Qq{Kq � vPQ

Mutualism: e.g., P � sharks, Q � feeder fish.

#
∆P � rPp1 � P{Kq � sPQ

∆Q � �uQ � vPQ

Immune system vs. infective agent:

P : immune cells
Q : level of infection

#
∆P � rQ � sPQ

∆Q � uQ � vPQ

�sPQ: negative effect on immune system from fighting

�sPQ: limited effect on immune system from fighting

rQ: immune response is proportional to infection level
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