
Reverse engineering using computational algebra

Matthew Macauley

Department of Mathematical Sciences
Clemson University

http://www.math.clemson.edu/~macaule/

Math 4500, Spring 2015

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 1 / 17

mailto:macaule@clemson.edu
http://www.math.clemson.edu/
http://www.clemson.edu/
http://www.math.clemson.edu/~macaule/
mailto:macaule@clemson.edu

The blind men and the elephant

An old parable from India tells of several blind men who try to determine what an
elephant looks like just by touch.

The blind men are trying to reverse engineer an elephant from just a few data points.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 2 / 17

mailto:macaule@clemson.edu

Inferring a Boolean network model (elephant) from data (observations)

Consider a Boolean network model on n nodes, with update function F : Fn
2 → Fn

2.
There are 2n input states.

Suppose we don’t know the actual function F , but through experimental data, we are
able to observe several transitions:

s1 = (s11, s12, . . . , s1n) s2 = (s21, . . . , s2n) sm = (sm1, . . . , smn)

t1 = (t11, t12, . . . , t1n) t2 = (t21, . . . , t2n) tm = (tm1, . . . , tmn)· · ·

· · ·

Reverse engineering

Start with experimental data (observations) and reconstruct the model (elephant).
The two main features are:

(i) the network topology, or wiring diagram,

(ii) the Boolean functions at each node: F = (f1, . . . , fn).

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 3 / 17

mailto:macaule@clemson.edu

Inferring a Boolean network model (elephant) from data (observations)
Consider the following polynomial dynamical system:

f1(x1, x2, x3) = AND(x1, x2) = x1x2

f2(x1, x2, x3) = AND(x1, x2, x3) = x1x2x3

f3(x1, x2, x3) = AND(x1, x2) = x1x2 .

The state space of the FDS map F = (f1, f2, f3) is the following graph:

001 010 011 100 101

000

110

111

Question

What if we only knew part of this state space, e.g.,

(1, 1, 0) −→ (1, 0, 1) −→ (0, 0, 0) −→ (0, 0, 0) .

Could we recover the individual functions? How many possible models could yield
this “fragment”?

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 4 / 17

mailto:macaule@clemson.edu

Reverse engineering

Broad goal

Find “the best” model F = (f1, . . . , fn) that fits the data:

Input states: s1, . . . , sm ∈ Fn

Output states: t1, . . . , tm ∈ Fn
with F (si) = ti

Note that: F (si) = (f1(si), f2(si), . . . , fn(si)) = (ti1, ti2, . . . , tin) = ti .

Question

What if no models fit the data?

What if many models fit the data? (This is more likely.)

First, we’ll find all models that fit the data. This is called the model space:

F1 × F2 × · · · × Fn = {(f1, . . . , fn) | fj(si) = tij for all i and j} .

Once we do this, the new problem becomes choosing the “best” one. This is called
model selection. We will not discuss this problem.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 5 / 17

mailto:macaule@clemson.edu

Similar problems in other areas of mathematics

1. Parametrize a line in Rn.

2. Parametrize a plane in Rn.

3. Solve the underdetermined system Ax = b.

4. Solve the differential equation x ′′ + x = 2.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 6 / 17

mailto:macaule@clemson.edu

Parametrize a line in Rn

Suppose we want to write the equation for a line that contains a vector v ∈ Rn:

x

y

z

v

t v
w

v+w

t v+w

This line, which contains the zero vector, is tv = {tv : t ∈ R}.

Now, what if we want to write the equation for a line parallel to v?

This line, which does not contain the zero vector, is

tv + w = {tv + w : t ∈ R} .

Note that ANY particular w on the line will work!!!

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 7 / 17

mailto:macaule@clemson.edu

Solve an underdetermined system Ax = b

Suppose we have a system of equations that has “too many variables,” so there are
infinitely many solutions.

For example:

2x + 3y − 6z = 3
3x − 4y + 3z = 1

“Ax = b form”:

[
2 3 −6
3 −4 3

]x
y
z

 =

[
3
1

]
.

How to solve:

1. Solve the related homogeneous equation Ax = 0 (this is null space, NS(A));

2. Find any particular solution xp to Ax = b;

3. Add these together to get the general solution: x = NS(A) + xp.

This works because geometrically, the solution space is just a line, plane, etc.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 8 / 17

mailto:macaule@clemson.edu

Linear differential equations

Solve the differential equation x ′′ + x = 2.

How to solve:

1. Solve the related homogeneous equation x ′′ + x = 0. The solutions are
xh(t) = a cos t + b sin t.

2. Find any particular solution xp(t) to x ′′ + x = 2. By inspection, we see that
xp(t) = 2 works.

3. Add these together to get the general solution:

x(t) = xh(t) + xp(t) = a cos t + b sin t + 2.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 9 / 17

mailto:macaule@clemson.edu

Reverse engineering: Problem statement

Definition

A finite dynamical system (FDS) is a function F = (f1, . . . , fn) : X n → X n where each
fi : X n → X is a local function and |X | <∞ (usually X = F2 = {0, 1}).

Key fact

If X = F is a finite field (e.g., Z2, Z3, Zp, etc.), then every function fi : Fn → F is a
polynomial in x1, . . . , xn.

Goal

Given a set of data:

Input states: s1, . . . , sm ∈ Fn

Output states: t1, . . . , tm ∈ Fn
with F (si) = ti

Construct the model space F1 × · · · × Fn of all models F = (f1, . . . , fn) that fit the
data:

F (si) = (f1(si), . . . , fn(si)) = (ti1, . . . , tin) = ti .

We’ll find each F1, . . . ,Fn separately.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 10 / 17

mailto:macaule@clemson.edu

Reverse engineering: How to find Fj

We wish to find the set Fj of all local functions (polynomials!) fj that fit the data:

Fj = {fj : fj(s1) = t1j , . . . , fj(sm) = tmj} .

Define the set I (it is actually an “ideal” of the polynomial ring F[x])

I = {h : h(si) = 0 for all i = 1, . . . ,m}
= {all polynomials that vanish on the data}.

Theorem

The set of polynomials that fit the data at node j is

Fj = fj + I = {fj + h : h ∈ I} ,

where fj is any one particular polynomial that fits the data.

Thus, to find Fj , we need to do two things:

1. Find the ideal I ; (all solutions to {fj(si) = 0 ∀i})
2. Find any polynomial fj that fits the data. (one solution to {fj(si) = tij ∀i})

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 11 / 17

mailto:macaule@clemson.edu

Reverse engineering: How to find I and fj

1. Finding I : Define I (si) to be the set of polynomials that vanish on si :

I (si) = {all polynomials hi such that hi (si) = 0}
= {(x1 − si1)g1(x) + (x2 − si2)g2(x) + · · ·+ (xn − sin)gn(x)}
= 〈x1 − si1, x2 − si2, . . . , xn − sin〉

Clearly, the set I of polynomials that vanish on all si (for i = 1, . . . ,m) is

I =
m⋂
i=1

I (si) .

2. Finding fj : There are many algorithms. Lagrange interpolation is one of them.

In this lecture, we will learn another method, and do a hands-on example.

We’ll get started with this now.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 12 / 17

mailto:macaule@clemson.edu

Finding fj (one method)

For each data point si (i = 1, . . . ,m), we’ll construct an r -polynomial that has the
following property:

ri (x) =

{
1 x = si

0 x 6= si

Once we have these, the polynomial fj(x) we seek will be

fj(x) = t1j r1(x) + t2j r2(x) + · · ·+ tmj rm(x) .

One way to construct the r -polynomials:

ri (x) =
m∏

k=1
k 6=i

bik(x) ,

where
bik(x) = (si` − sk`)p−2(x` − sk`)

and ` is the first coordinate in which si and sk differ.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 13 / 17

mailto:macaule@clemson.edu

An example

Consider the following time series in a 3-node system over Z5:

s1 = (2, 0, 0)= t0

s2 = (4, 3, 1) = t1

s3 = (3, 1, 4) = t2

s4 =(0, 4, 3) = t3

For reference, here are the input vectors si and output vectors ti :

s1 = (s11, s12, s13) = (2, 0, 0) , t1 = (t11, t12, t13) = (4, 3, 1) ,

s2 = (s21, s22, s23) = (4, 3, 1) , t2 = (t21, t22, t23) = (3, 1, 4) ,

s3 = (s31, s32, s33) = (3, 1, 4) , t3 = (t31, t32, t33) = (0, 4, 3) .

Note that s1 differs from s2 and s3 in the ` = 1 coodinate, so this ` will work for each
of r1, r2, and r3.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 14 / 17

mailto:macaule@clemson.edu

An example: computing the r -polynomials

Since we are working in Z5, we are taking the remainder of everything modulo 5.

Particularly useful identities are: 0 = 5, −1 = 4, −2 = 3, −3 = 2, and −4 = 1.

Using our formulas for bij(x), we compute:

b12(x) = (s11 − s21)3(x1 − s21) = (2− 4)3(x1 − 4) = −8(x1 + 1) = 2x1 + 2

b13(x) = (s11 − s31)3(x1 − s31) = (2− 3)3(x1 − 3) = −x1 + 3 = 4x1 + 3 .

Therefore, the first r -polynomial is

r1(x) = b12(x)b13(x) = (2x1 + 2)(4x1 + 3) = 8x2
1 + 14x1 + 6 = 3x2

1 + 4x1 + 1 .

In-class Exercise

Compute the other two r -polynomials in this example: r2(x) and r3(x).

Solution: r2(x) = 3x2
1 + 3 , r3(x) = 4x2

1 + x1 + 2.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 15 / 17

mailto:macaule@clemson.edu

An example: computing the ideal I

Recall that the ideal I is the set I of polynomials that vanish on all si :

I = I (s1) ∩ I (s2) ∩ I (s3) ,

where
s1 = (2, 0, 0) , s2 = (4, 3, 1) , s3 = (3, 1, 4) .

These are precisely the sets

I (s1) = 〈x1 − 2, x2, x3〉 = {(x1 − 2)g1(x) + x2g2(x) + x3g3(x)}
I (s2) = 〈x1 − 4, x2 − 3, x3 − 1〉 = {(x1 − 4)g1(x) + (x2 − 3)g2(x) + (x3 − 1)g3(x)}
I (s3) = 〈x1 − 3, x2 − 1, x3 − 4〉 = {(x1 − 3)g1(x) + (x2 − 1)g2(x) + (x3 − 4)g3(x)}

A computer algebra system (e.g., Sage or Macaulay2) can easily compute the
intersection of these ideals.

Usually it will return the ideal I by specifying a generating set.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 16 / 17

mailto:macaule@clemson.edu

An example: finding the model space

Now that we have all of the pieces, f1, f2, and f3 can be computed easily:

fj(x) = t1j r1(x) + t2j r2(x) + · · ·+ tmj rm(x) .

Our “particular” solution that fits the data is f = (f1, f2, f3), and our “general
solution” (the model space) is the set

F1 × · · · × Fn = f + (I × · · · × I)

= (f1 + I , . . . , fn + I) .

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Spring 2015 17 / 17

mailto:macaule@clemson.edu

