Read: Lax, Chapter 8, pages 101-120.

1. (a) Write the equation $5 x_{1}^{2}-6 x_{1} x_{2}+5 x_{2}^{2}=1$ in the form $x^{T} A x=1$.
(b) Write $A=P^{T} D P$, where D is a diagonal matrix and P is orthogonal with determinant 1.
(c) Sketch the graph of the equation $x^{T} D x=1$ in the $x_{1} x_{2}$-plane.
(d) Use a geometric argument applied to part (c) to sketch the graph of $x^{T} A x=1$.
(e) Repeat Parts (a)-(d) for the equation $2 x_{1}^{2}+6 x_{1} x_{2}+2 x_{2}^{2}=1$.
2. Let S be the cyclic shift mapping of \mathbb{C}^{n}, that is, $S\left(z_{1}, \ldots, z_{n}\right)=\left(z_{n}, z_{1}, \ldots, z_{n-1}\right)$.
(a) Prove that S is an isometry in the Euclidean norm.
(b) Determine the eigenvalues and eigenvectors of S.
(c) Verify that the eigenvectors are orthogonal.

Hint: There are very short and elegant solutions for all three parts of this problem! You may find the last problem on HW 9 useful.
3. Let $N: X \rightarrow X$ be a normal mapping of a Euclidean space. Prove that $\|N\|=\max \left|n_{i}\right|$, where the n_{i} s are the eigenvalues of N.
4. Let $H, M: X \rightarrow X$ be self-adjoint mappings, and M positive definite.
(a) Define a scalar product on X by $\langle x, y\rangle:=(x, M y)$. Prove that this is an inner product.
(b) Prove that all the eigenvalues of $M^{-1} H$ are real.
(c) Prove that if H is positive-definite, then so is $M^{-1} H$. Conclude that all eigenvalues of $M^{-1} H$ are positive.
5. Let $H, M: X \rightarrow X$ be self-adjoint mappings, and M positive definite. Define

$$
R_{H, M}(x)=\frac{(x, H x)}{(x, M x)}
$$

(a) Let $\mu=\inf \left\{R_{H, M}(x) \mid x \in X\right\}$. Show that μ exists, and that there is some $v \in X$ for which $R_{H, M}(v)=\mu$, and that μ and v satisfy $H v=\mu M v$.
(b) Show that the constrained minimum problem

$$
\min \left\{R_{H, M}(x) \mid(x, M v)=0\right\}
$$

has a nonzero solution $w \in X$, and that this solution satisfies $H w=\kappa M w$, where $\kappa=R_{H, M}(w)$.
6. Let $H, M: X \rightarrow X$ be self-adjoint mappings, and M positive definite.
(a) Show that there exists a basis v_{1}, \ldots, v_{n} of X where each v_{i} satisfies an equation of the form

$$
H v_{i}=\mu_{i} M v_{i} \quad\left(\mu_{i} \text { real }\right), \quad\left(v_{i}, M v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

(b) Compute $\left(v_{i}, H v_{j}\right)$, and show that there is an invertible real matrix U for which $U^{*} M U=I$ and $U^{*} H U$ is diagonal.
(c) Characterize the numbers $\mu_{1}, \ldots \mu_{n}$ by a minimax principle.

