1. Let X_{1}, X_{2} be vector spaces over a field K. Show that $\operatorname{dim}\left(X_{1} \times X_{2}\right)=\operatorname{dim} X_{1}+\operatorname{dim} X_{2}$.
2. Let Y be a subspace of a vector space X. Show that $Y \times X / Y$ is isomorphic to X.
3. Let K be a finite field. The characteristic of K, denoted char K, is the smallest positive integer n for which $n 1:=\underbrace{1+1+\cdots+1}_{n \text { times }}=0$.
(a) Prove that the characteristic of K is prime.
(b) Show that K is a vector space over \mathbb{Z}_{p}, where $p=$ char K.
(c) Show that the order $|K|$ of K (the number of elements it contains) is a prime power.
(d) Show that if K and L are finite fields with $K \subset L$ and $|K|=p^{m}$ and $|L|=p^{n}$, then m divides n.
4. Let X be a vector space over a field K and let X^{\prime} be the the set of linear functions from X to K, also known as the dual space of X.
(a) Let v_{1}, \ldots, v_{n} be a basis for X. For each i, show there exists a unique linear map $f_{i}: X \rightarrow K$ such that $f_{i}\left(v_{i}\right)=1$ and $f_{i}\left(v_{j}\right)=0$ for $j \neq i$.
(b) Show that f_{1}, \ldots, f_{n} is a basis for X^{\prime} (called the dual basis of v_{1}, \ldots, v_{n}).
(c) Consider the basis $v_{1}=(1,-1,3), v_{2}=(0,1,-1)$, and $v_{3}=(0,3,-2)$ of $X=\mathbb{R}^{3}$. Find a formula for each element of the dual basis.
(d) Express the linear map $f \in X^{\prime}$, where $f(x, y, z)=2 x-y+3 z$ as a linear combination of the dual basis, f_{1}, f_{2}, f_{3}.
5. Let S be a subset of X. The annihilator of S is the set

$$
S^{\perp}=\left\{\ell \in X^{\prime} \mid \ell(s)=0 \text { for all } s \in S\right\} .
$$

(a) Show that if S is a subspace of X, then S^{\perp} is a subspace of X^{\prime}.
(b) Let Y be the smallest subspace of X that contains S. Show that $S^{\perp}=Y^{\perp}$.

