1. Let \mathcal{P}_{2} be the vector space of all polynomials $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ over \mathbb{R}, with degree ≤ 2. Let $\xi_{1}, \xi_{2}, \xi_{3}$ be distinct real numbers, and define

$$
\ell_{j}=p\left(\xi_{j}\right) \quad \text { for } \quad j=1,2,3 .
$$

(a) Show that $\ell_{1}, \ell_{2}, \ell_{3}$ are linearly independent functions on \mathcal{P}_{2}.
(b) Show that $\ell_{1}, \ell_{2}, \ell_{3}$ is a basis for the dual space \mathcal{P}_{2}^{\prime}.
(c) Find polynomials $p_{1}(x), p_{2}(x), p_{3}(x)$ in \mathcal{P}_{2} of which $\ell_{1}, \ell_{2}, \ell_{3}$ is the dual basis in \mathcal{P}_{2}^{\prime}.
2. Let W be the subspace of \mathbb{R}^{4} spanned by $(1,0,-1,2)$ and $(2,3,1,1)$. Which linear functions $\ell(x)=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}$ are in the annihilator of W ? Write your answer by giving an explicit basis of W^{\perp}.
3. Let $T: X \rightarrow U$ be a linear map. Prove the following:
(a) The image of a subspace of X is a subspace of U.
(b) The inverse image of a subspace of U is a subspace of X.
4. Prove Theorem 3.3 in Lax:
(a) The composite of linear mappings is also a linear mapping.
(b) Composition is distributive with respect to the addition of linear maps, that is,

$$
(R+S) \circ T=R \circ T+S \circ T
$$

and

$$
S \circ(T+P)=S \circ T+S \circ P,
$$

where $R, S: U \rightarrow V$ and $P, T: X \rightarrow U$.
5. Let X be a finite-dimensional vector space over K and let $\left\{x_{1}, \ldots, x_{n}\right\}$ be an ordered basis for X. Let U be a vector space over the same field K but possibly with a different dimension, and let $\left\{u_{1}, \ldots, u_{n}\right\}$ be an arbitrary set of vectors in U. Show that there is precisely one linear transformation $T: X \rightarrow U$ such that $T x_{i}=u_{i}$ for each $i=1, \ldots, n$.
6. Let X and U be vector spaces, and suppose that Y is a subspace of X. Let $Q: X \rightarrow$ X / Y be the canonical quotient map sending $x \stackrel{Q}{\longmapsto}\{x\}$, and let $T: X \rightarrow U$ be a linear map. Give necessary and sufficient conditions for the existence of a unique linear map $S: X / Y \rightarrow U$ such that $T=S \circ Q$. When this happens, the map T is said to factor through the quotient space, as shown by the following commutative diagram:

Prove all of your claims.

