Throughout, X is assumed to be a vector space of dimension $n<\infty$.

1. Show that whenever meaningful,
(a) $(S T)^{\prime}=T^{\prime} S^{\prime}$
(b) $(T+R)^{\prime}=T^{\prime}+R^{\prime}$
(c) $\left(T^{-1}\right)^{\prime}=\left(T^{\prime}\right)^{-1}$.

Here, S^{\prime} denotes the transpose of S. Carefully describe what you mean by "whenever meaningful" in each case.
2. Give a direct algebraic proof of $N_{T^{\prime}}^{\perp}=\left(R_{T}^{\perp}\right)^{\perp}$. (That is, don't just use the fact that $N_{T^{\prime}}=R_{T}^{\perp}$ and take the annihilator of both sides.)
3. Let $A, B: X \rightarrow X$ be linear maps.
(a) Show that if A is invertible and similar to B, then B is also invertible, and B^{-1} is similar to A^{-1}.
(b) Show that if either A or B is invertible, then $A B$ and $B A$ are similar.
4. Suppose $T: X \rightarrow X$ is a linear map of rank 1 .
(a) Show that there exists $c \in K$ such that $T^{2}=c T$.
(b) Show that if $c \neq 1$, then $I-T$ has an inverse.
5. Suppose that $S, T: X \rightarrow X$ are linear maps.
(a) Show that $\operatorname{rank}(S+T) \leq \operatorname{rank}(S)+\operatorname{rank}(T)$.
(b) Show that $\operatorname{rank}(S T) \leq \operatorname{rank}(S)$.
(c) Show that $\operatorname{dim}\left(N_{S T}\right) \leq \operatorname{dim} N_{S}+\operatorname{dim} N_{T}$.

For each of these, give an explicit example showing how equality need not hold.
6. Let $T: X \rightarrow X$ be linear, with $\operatorname{dim} X=n$.
(a) Prove that if $T^{2}=T$, then $X=R_{T} \oplus N_{T}$.
(b) Show by example that if $T^{2} \neq T$, then $X=R_{T} \oplus N_{T}$ need not hold.
(c) Prove that $N_{T^{n}}=N_{T^{n+1}}$ and $R_{T^{n}}=R_{T^{n+1}}$.
(d) Prove that $X=R_{T^{n}} \oplus N_{T^{n}}$.
(e) Show there exists a linear map $S: X \rightarrow X$ such that $S T=T S$ and $S T^{n+1}=T^{n}$.

