Read: Lax, Chapter 5, pages 44-57.

1. Let S_{n} denote the set of all permutations of $\{1, \ldots, n\}$.
(a) Prove that $\operatorname{sgn}\left(\pi_{1} \circ \pi_{2}\right)=\operatorname{sgn}\left(\pi_{1}\right) \operatorname{sgn}\left(\pi_{2}\right)$.
(b) Let $\pi \in S_{n}$, and suppose that $\pi=\tau_{k} \circ \cdots \circ \tau_{1}=\sigma_{\ell} \circ \cdots \circ \sigma_{1}$, where $\tau_{i}, \sigma_{j} \in S_{n}$ are transpositions. Prove that $k \equiv \ell \bmod 2$.
2. Let X be an n-dimensional vector space over a field K.
(a) Prove that if the characteristic of K is not 2, then every skew-symmetric form is alternating.
(b) Give an example of a non-alternating skew-symmetric form.
(c) Give an example of a non-zero alternating k-linear form $(k<n)$ such that $f\left(x_{1}, \ldots, x_{k}\right)=$ 0 for some set of linearly independent vectors x_{1}, \ldots, x_{k}.
3. Let X be a 2-dimensional vector space over \mathbb{C}, and let $f: X \times X \rightarrow \mathbb{C}$ be an alternating, bilinear form. If $\left\{x_{1}, x_{2}\right\}$ is a basis of X, determine a formula for $f(u, v)$ in terms of $f\left(x_{1}, x_{2}\right)$, and the coefficients used to express u and v with this basis. [Pun intented!]
4. Let X be an n-dimensional vector space over \mathbb{R}, and let f be a non-degenerate symmetric bilinear form. That is, it has the additional property that for all nonzero $x \in X$, there is some $y \in X$ for which $f(x, y) \neq 0$.
(a) Prove that the map $L: X \rightarrow X^{\prime}$ given by $L: x \mapsto f(x,-)$ is an isomorphism.
(b) Show that, given any basis x_{1}, \ldots, x_{n} for X, there exists a basis y_{1}, \ldots, y_{n} such that $f\left(x_{i}, y_{j}\right)=\delta_{i j}$.
(c) Conversely, prove that if $B_{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $B_{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$ are sets of vectors in X with $f\left(x_{i}, y_{j}\right)=\delta_{i j}$, then B_{X} and B_{Y} are bases for X.
5. Let X be an n-dimensional vector space over \mathbb{R}, and let f be a non-degenerate symmetric bilinear form.
(a) Show that there exists $x_{1} \in X$ with $f\left(x_{1}, x_{1}\right) \neq 0$.
(b) Show that the kernel Z_{1} of the linear map $f\left(x_{1},-\right)$ has dimension $n-1$.
(c) Show that the restriction of f to $Z_{1} \times Z_{1}$ is again non-degenerate.
(d) Prove that X has a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $f\left(x_{i}, x_{i}\right) \neq 0$ for all i, and $f\left(x_{i}, x_{j}\right)=$ 0 whenever $i \neq j$.
(e) Give an example of a vector space $X(2 \leq \operatorname{dim} X<\infty)$ with basis B and a nondegenerate symmetric bilinear form f for which $f(x, x)=0$ for all $x \in B$.
6. Let $A=\left(c_{1}, \ldots, c_{n}\right)$ be an $n \times n$ matrix (c_{i} is a column vector), and let B be the matrix obtained from A by adding k times the $i^{\text {th }}$ column of A to the $j^{\text {th }}$ column of A, for $i \neq j$. Prove that $\operatorname{det} A=\operatorname{det} B$.
