Read: Lax, Chapter 6, pages 58-69.

1. Prove the following properties of the trace function:
(a) $\operatorname{tr} A B=\operatorname{tr} B A$ for all $m \times n$ matrices A and $n \times m$ matrices B.
(b) $\operatorname{tr} A A^{T}=\sum a_{i j}^{2}$ for all $n \times n$ matrices A. The quantity is the square of the HilbertSchmidt norm of A.
2. Find the eigenvalues and corresponding eigenvectors for the following matrices over \mathbb{C}.
(a) $\left[\begin{array}{cc}3 & 2 \\ -2 & 3\end{array}\right]$
(b) $\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$
(c) $\left[\begin{array}{ccc}3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0\end{array}\right]$.
3. (a) Show that if A and B are similar, then A and B have the same eigenvalues.
(b) Is the converse of Part (a) true? Prove or disprove.
4. Let A_{θ} be a 3×3 matrix representing a rotation of \mathbb{R}^{3} through an angle θ about the y-axis.
(a) Find the eigenvalues for A_{θ} over \mathbb{C}.
(b) Determine necessary and sufficient conditions on θ in order for A_{θ} to contain three linearly independent eigenvectors in \mathbb{R}^{3}. Justify your claim and interpret it geometrically.
5. Let A be a 2×2 matrix over \mathbb{R} satisfying $A^{T}=A$. Prove that A has 2 linearly independent eigenvectors in \mathbb{R}^{2}.
6. Let A be an invertible $n \times n$ matrix. Prove that A^{-1} can be written as a polynomial in degree at most $n-1$. That is, prove that there are scalars c_{i} such that

$$
A^{-1}=c_{n-1} A^{n-1}+c_{n-2} A^{n-2}+\cdots c_{1} A+c_{0} I .
$$

7. Let A be an $n \times n$ matrix over \mathbb{C} with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. For a vector $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, define the norm of z by

$$
\|z\|=\left(\sum_{i=1}^{n}\left|z_{i}\right|\right)^{1 / 2}
$$

(a) Prove that if $\left|\lambda_{i}\right|<1$ for all i, then $\left\|A^{N} z\right\| \rightarrow 0$ as $N \rightarrow \infty$ for all $z \in \mathbb{C}^{n}$.
(b) Prove that if $\left|\lambda_{i}\right|>1$ for all i, then $\left\|A^{N} z\right\| \rightarrow \infty$ as $N \rightarrow \infty$ for all nonzero $z \in \mathbb{C}^{n}$.

