Read: Lax, Chapter 6, pages 69-76.

1. Let A be an $n \times n$ matrix over \mathbb{C} with an eigenvalue λ of index $m \geq 2$ and corrresponding eigenvector v_{1}. Let v_{2} be a generalized eigenvector satisfying $(A-\lambda I) v_{2}=v_{1}$.
(a) Prove that for any natural number N,

$$
A^{N} v_{2}=\lambda^{N} v_{2}+N \lambda^{N-1} v_{1} .
$$

(b) Prove that for any polynomial $q(t) \in \mathbb{C}[t]$,

$$
q(A) v_{2}=q(\lambda) v_{2}+q^{\prime}(\lambda) v_{1}
$$

where $q^{\prime}(t)$ is the derivative of q.
(c) Conjecture a formula for $q(A) v_{m}$, where v_{1}, \ldots, v_{m} are generalized eigenvectors of A with $(A-\lambda I) v_{k}=v_{k-1}$ (and say $v_{0}=0$, for convenience).
2. Consider the following matrices:

$$
A=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right], \quad B=\left[\begin{array}{cc}
0 & -2 \\
-2 & 0
\end{array}\right], \quad C=\left[\begin{array}{cc}
3 & 1 \\
-1 & 1
\end{array}\right]
$$

(a) Determine the characteristic and minimal polynomials of A, B, and C.
(b) Determine the eigenvectors and generalized eigenvectors of A, B, and C.
3. Consider the following matrices:

$$
A=\left[\begin{array}{ccc}
2 & -2 & 14 \\
0 & 3 & -7 \\
0 & 0 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & -4 & 85 \\
1 & 4 & -30 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{ccc}
2 & 2 & 1 \\
0 & 2 & -1 \\
0 & 0 & 3
\end{array}\right] .
$$

A straightforward calculation shows that the characteristic polynomials are

$$
p_{A}(t)=p_{B}(t)=p_{C}(t)=(t-2)^{2}(t-3) .
$$

(a) Determine the minimal polynomials $m_{A}(t), m_{B}(t)$, and $m_{C}(t)$.
(b) Determine the eigenvectors and generalized eigenvectors of A, B, and C.
(c) Determine which of these matrices are similar.
4. Let λ be an eigenvalue of A, and let N_{i} be the nullspace of $(A-\lambda I)^{i}$. Prove that $A-\lambda I$ extends to a well-defined map $N_{i+1} / N_{i} \longrightarrow N_{i} / N_{i-1}$, and that this mapping is 1-1.
5. Let A be an $n \times n$ matrix over \mathbb{C}.
(a) Prove that if $A^{k}=A$ for some integer $k>1$, then A is diagonalizable.
(b) Prove that if $A^{k}=0$, then $A^{n}=0$.
6. Let X be an n-dimensional vector space over \mathbb{C}, and let $A, B: X \rightarrow X$ be linear maps.
(a) Prove that if $A B=B A$, then for any eigenvector v of A with eigenvalue λ, the vector $B v$ is an eigenvector of A for λ.
(b) Show that if $\left\{A_{1}, A_{2}, \ldots \mid A_{i}: X \rightarrow X\right\}$ is a (possibly infinite) set of pairwise commuting maps, then there is a nonzero $x \in X$ that is an eigenvector of every A_{i}.
(c) Suppose that A and B are both diagonalizable. Show that $A B=B A$ if and only if they are simultaneously diagonalizable, i.e., there exists an invertible $n \times n$-matrix P such that both $P^{-1} A P$ and $P^{-1} B P$ are diagonal matrices.

