Read: Lax, Chapter 7, pages 89-100.

1. Let X be a finite-dimensional real Euclidean space. We say that a sequence $\left\{A_{n}\right\}$ of linear maps converges to a limit A if $\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|=0$.
(a) Show that $\left\{A_{n}\right\}$ converges to A if and only if for all $x \in X, A_{n} x$ converges to $A x$.
(b) Show by example that this fails if $\operatorname{dim} X=\infty$.
2. Let $A: X \rightarrow U$ be a linear map between Euclidean spaces, and let $A^{*}: U \rightarrow X$ denote the adjoint map. The map A has a left inverse if there is a linear map $L: U \rightarrow X$ such that $L A=I_{X}$, the identity on X. It has a right inverse if there is a linear map $R: U \rightarrow X$ such that $A R=I_{U}$ is the identity on U.
(a) Prove that $R_{A^{*}}^{\perp}=N_{A}$.
(b) Prove that A maps $R_{A^{*}}$ bijectively onto R_{A}.
(c) Show that if A has a left inverse, then $A x=u$ has at most one solution. Give a condition on u that completely characterizes when there is a solution.
(d) Show that if A has a right inverse, then $A x=u$ has at least one solution. If $A x_{p}=u$ for some particular $x_{p} \in X$, then describe all solutions for x in this case. What condition ensures that there will be only one solution?
(e) What are the possibilities for the rank of A if it has a left inverse? What if it has a right inverse?
3. Let X be the space of continuous complex-valued functions on $[-1,1]$ and define an inner product on X by

$$
(f, g)=\int_{-1}^{1} f(s) \bar{g}(s) d s
$$

Let $m(s)$ be a continuous function of absolute value 1 , that is, $|m(s)|=1,-1 \leq s \leq 1$. Define M to be multiplication by m :

$$
(M f)(s)=m(s) f(s)
$$

Show that M is unitary.
4. Let A be a linear map of a finite-dimensional complex Euclidean space X.
(a) A matrix is normal if $A A^{*}=A^{*} A$. It is unitarily similar to a diagonal matrix if $A=U^{*} D U$ for a diagonal matrix D and unitary matrix U. Show that these conditions are equivalent.
(b) Prove that if A is normal then it has a square-root, that is, a matrix B such that $A=B^{2}$. Is B necessarily normal? Unique?
(c) Suppose that A is diagonalizable. Prove that A is normal if and only if each eigenvector of A is an eigenvector of A^{*}.
5. Express $q\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}+8 x_{1} x_{2}-7 x_{1} x_{3}+12 x_{2}^{2}-8 x_{2} x_{3}+6 x_{3}^{2}$ as $q(x)=x^{T} A x$, where A is symmetric.
6. Let

$$
M=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]
$$

and let $q(x)=(x, M x)$. Find an orthogonal matrix P which diagonalizes the quadratic form q.

