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Abstract
Graph dynamical systems (GDSs) generalize concepts such as cellular automata
and Boolean networks and can describe a wide range of distributed, nonlinear
phenomena. Two GDSs are cycle equivalent if their periodic orbits are
isomorphic as directed graphs, which captures the notion of having comparable
long-term dynamics. In this paper, we study cycle equivalence of GDSs in
which the vertex functions are applied sequentially through an update sequence.
The main result is a general characterization of cycle equivalence based on
the underlying graph Y and the update sequences. We construct and analyse
two graphs C(Y ) and D(Y) whose connected components contain update
sequences that induce cycle equivalent dynamical system maps. The number
of components in these graphs, denoted κ(Y ) and δ(Y ), bound the number
of possible long-term behaviour that can be generated by varying the update
sequence. We give a recursion relation for κ(Y ) which in turn allows us to
enumerate δ(Y ). The components of C(Y ) and D(Y) characterize dynamical
neutrality, their sizes represent structural stability of periodic orbits and the
number of components can be viewed as a system complexity measure. We
conclude with a computational result demonstrating the impact on complexity
that results when passing from radius-1 to radius-2 rules in asynchronous
cellular automata.

Mathematics Subject Classification: 37B99, 93D99, 20F55

1. Introduction

This paper is concerned with dynamical systems on networks. Specifically, we consider graph
dynamical systems (GDSs) which are constructed from (i) a finite undirected graph Y where
each vertex has a state from a set K , (ii) a sequence of vertex functions and (iii) an update
scheme [6, 12]. The vertex function fv of vertex v is used to map the state of v at time t to
time t + 1. That is, fv maps yv(t) to yv(t + 1), and the arguments to the function are the states
of vertex v and its neighbouring vertices in Y . We refer to this as a vertex update. The update
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scheme governs how the collection of vertices are updated in a time step. For example, a
synchronous update scheme will apply all the vertex functions simultaneously. One complete
execution of the update scheme is called a system update, or GDS map, and it takes the system
state from time t to t + 1.

In this paper we will consider sequential dynamical systems (SDSs). This is a class of
GDSs where the update scheme is governed by a word w = (w1, . . . , wk) over the vertex set
of Y . A system update for an SDS is conducted by applying the vertex functions in sequence as
specified by w: first one applies fw1 , then fw2 and so on up to fwk

. The dynamical system map,
or SDS map, is essentially the composition of the vertex functions in the sequence specified
by w. Clearly, different update schemes may give rise to different GDS maps. We remark that
an asynchronous cellular automaton is a special case of an SDS.

GDSs represent a useful framework for capturing distributed, dynamical phenomena with
local interactions. Application examples include disease dynamics on social contact graphs [8],
packet transport in wireless networks, traffic systems with individual cars [14] and dynamics
of biological systems [1]. Additionally, many computational algorithms correspond precisely
to SDSs. For example, the algorithms of [9, 15] on gene annotation and transport computations
on irregular grids amount to fixed point computations of SDSs. It is also interesting to note
that the concept of GDSs generalizes classical cellular automata as well as many similar
constructions.

A general theme in GDS research is the deduction of global dynamics and phase space
properties based on the structure of the graph, the vertex functions and the nature of the update
scheme. This is as opposed to exhaustive computations which quickly become intractable for
realistic systems. Our paper is about cycle equivalence of finite GDSs, and we study this in
the context of SDSs. Since the state space is finite, the phase space may be represented as
a directed graph. Two GDSs are cycle equivalent if their periodic orbits are isomorphic as
directed graphs. In other words, cycle equivalence captures the fact that dynamical systems
have the same long-term dynamics.

In this paper we will show how properties of the graph and the update sequence of SDSs
affect the periodic orbit structures. As a particular example, we show the surprising result that
if the graph Y is a tree then there is only one possible periodic orbit configuration and that
this holds for any fixed choice of vertex functions. Additionally, we give a graph measure κ

that bounds the number of possible periodic orbit configurations for general graphs. In light
of this, κ may serve as a graph–theoretical complexity measure for these systems. We also
describe how one can construct a complete set of update sequence representatives to generate
all possible orbit configurations.

Paper organization. In section 2, we describe SDS related terminology and relevant
background results from [12, 13, 16] on functional and dynamical equivalence of SDSs. In
section 3, we prove one of the main results of this paper: SDSs over a common graph that
have the same vertex functions and whose update sequences differ by a cyclic shift are cycle
equivalent. Additionally, when the vertex states are taken from K = {0, 1}, which is the
standard choice in most studies of cellular automata, then reflections of the update sequence
also result in cycle equivalent SDSs. In section 4, we introduce the graphs C(Y ) and D(Y)

which form the basis for our analysis and characterization of cycle equivalence over general
graphs. These graphs are examples of neutral networks, and we characterize some of their
structural properties. The components of these graphs correspond to certain equivalence classes
of acyclic orientations of Y , and we show how shifts and reflections of update sequences have
a natural interpretation in terms of source-to-sink operations on the acyclic orientations. Based
on this correspondence, we study the functions κ and δ which count the connected components
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of C(Y ) and D(Y), respectively. Here we show how δ(Y ) is derived from κ(Y ) and give several
results for the computation of κ(Y ) along with their implications for dynamics.

As explained earlier, κ and δ can be regarded as measures for system complexity, and
as a computational example, we demonstrate how κ(Y ) increases from �(n) for radius-1
elementary cellular automaton rules to �(n · 2n) upon passing to radius-2 rules. We also show
how the presence of symmetries in the graph may allow for improved complexity bounds.

In the final section, we indicate how cycle equivalence of SDSs is closely related to Coxeter
theory. Some of the results that we prove in this paper have a natural analogue when translated
into the language of Coxeter groups, a field rich in algebra, combinatorics and geometry. This
opens the door to using the mathematical tools and results from Coxeter theory to study SDSs,
something that has never been done before.

2. Background and definitions

Let Y be a finite undirected graph with vertex set v[Y ] = {1, . . . , n} and edge set e[Y ]. Since
most graphs in this paper are finite and undirected we simply refer to this class of graphs as
‘graphs’ and specify otherwise if needed. The 1-neighbourhood of vertex v in Y is the set
B1(v; Y ) = {

v′ ∈ v[Y ] | {v, v′} ∈ e[Y ]
} ∪ {v} and the ordered 1-neighbourhood n[v] of v is

the sequence of vertices from B1(v; Y ), in increasing order. The degree of vertex v is written
d(v). Each vertex v is assigned a state yv ∈ K where K is a finite set. In the following, yv is
called a vertex state and the n-tuple y = (y1, . . . , yn) is a system state3. We write

y[v] = (yn[v](1), . . . , yn[v](d(v)+1)) (2.1)

for the restriction of the system state to the vertices in n[v] and let y ′[v] denote the same tuple
but with the vertex state yv omitted. The finite field with q = pk elements is denoted Fq .

Let fY := (fi)i∈v[Y ] be a sequence of vertex functions fi : Kd(i)+1 −→ K and define the
sequence of Y -local functions FY := (Fi)i∈v[Y ] with Fi : Kn −→ Kn by

Fi(y1, · · · , yn) = (y1, . . . , yi−1, fi(y[i]), yi+1, . . . , yn). (2.2)

It is clear that fY completely determines FY and vice versa. However, there are settings when
it is easier to speak of one rather than the other.

Let WY denote the set of words over v[Y ]4. Words are written as w = (w1, w2, . . . , wm),
w = w1w2 · · · wm, w = (w(1), w(2), . . . , w(m)), etc. The subset of WY where each element
of v[Y ] occurs exactly once is denoted SY , and thus the elements of SY may be thought of as
permutations of v[Y ]. The symmetric group Sn acts on system states by

γ · (y1, . . . , yn) = (yγ −1(1), . . . , yγ −1(n)). (2.3)

Definition 2.1 (Sequential dynamical system). A sequential dynamical system (SDS) is a
triple (Y, FY , w) where Y is a graph, FY = (Fi)i∈v[Y ] is a sequence of Y -local functions and
w = (w1, . . . , wm) ∈ WY . The associated SDS map [FY , w]: Kn −→ Kn is the function
composition

[FY , w] = Fwm
◦ Fwm−1 ◦ · · · ◦ Fw2 ◦ Fw1 . (2.4)

The graph Y of an SDS is called the base graph, and when w ∈ SY , the SDS is referred to as
a permutation SDS. A sequence of Y -local functions FY is Aut(Y )-invariant if γ ◦Fv = Fγ(v)◦γ

for all v ∈ v[Y ] and all γ ∈ Aut(Y ). Here, the composition of a function Kn → Kn with a
permutation of K is interpreted as in (2.3). The corresponding sequence of vertex functions

3 In the context of, for example, cellular automata a system state is frequently called a configuration.
4 Also referred to as the Kleene star or Kleene closure of v[Y ].
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Figure 1. The graph Circ4 (left), the phase space with the update sequence (1, 2, 3, 4) (middle)
and the phase space with a synchronous update scheme (right) of example 2.2.

fY is Aut(Y )-invariant if FY is Aut(Y )-invariant. The phase space of the map φ: Kn −→ Kn is
the directed graph �(φ) with vertex set Kn and edge set

{
(y, φ(y)) | y ∈ Kn

}
. The following

example illustrates these concepts.

Example 2.2 (Asynchronous elementary cellular automaton rule ECA #1). Let Y =
Circ4, the graph with vertex set {1, 2, 3, 4} and edges {i, i + 1} modulo 4 as shown on
the left in figure 1 and with binary vertex states. In this setting we have system state
y = (y1, y2, y3, y4) and ordered neighbourhood n[1] = (1, 2, 4) with restricted system state
y[1] = (y1, y2, y4). If we use the Boolean nor-function nor3: F

3
2 −→ F2 (i.e. ECA #1) given

by nor3(x, y, z) = (1 + x)(1 + y)(1 + z) to induce the vertex functions we get, for exam-
ple, F1(y) = (nor3(y[1]), y2, y3, y4). With the update sequence π = (1, 2, 3, 4) we get the
SDS map

[NorY , π ] = F4 ◦ F3 ◦ F2 ◦ F1. (2.5)

It is easily verified that [NorY , π ](0, 0, 0, 0) = (1, 0, 1, 0). In contrast, for a synchronous
update scheme, the system state (0, 0, 0, 0) would have been mapped to (1, 1, 1, 1). The entire
phase space of the SDS map [NorY , π ] in (2.5) is displayed in figure 1 (middle) along with the
phase space for a synchronous update scheme (right).

What follows is a short overview of functional and dynamical equivalence of SDSs. The
analysis is largely concerned with the aspect of update sequences and characterizes SDS maps
for a fixed graph Y and fixed Y -local functions FY in terms of w. These equivalence notions
provide the foundation for cycle equivalence.

2.1. Functional equivalence

Two SDSs are functionally equivalent if their SDS maps are identical as functions. For a fixed
sequence FY , a natural question to ask is when is [FY , w] = [FY , w′] for w, w′ ∈ WY ? The
update graph Û (Y ) provides an answer to this. The update graph of Y has a vertex set WY .
Two length-m words w �= w′ are adjacent if (i) they differ only by a transposition of entries k

and k + 1 and (ii) {wk, wk+1} �∈ e[Y ]. The finite subgraph U(Y ) of Û (Y ) induced by the vertex
set SY is called the permutation update graph and is denoted U(Y ). Clearly, it is a union of
connected components of Û (Y ). Both U(Y ) and Û (Y ) are examples of neutral networks as
mentioned in the introduction. The update graph U(Circ4) is shown figure 3.

Let ∼α be the equivalence relation on SY defined by π ∼α π ′ iff π and π ′ belong to the
same connected component in U(Y ). We denote an equivalence class by [π ]α and the set of
equivalence classes by SY /∼α , i.e.

SY /∼α = {[π ]α | π ∈ SY }.
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By construction, we have the implication

π ∼α σ �⇒ [FY , π ] = [FY , σ ].

If the vertex functions are Boolean nor-functions as in example 2.2, then [NorY , π ] = [NorY , σ ]
implies π ∼α σ (see [12]). In other words,

[NorY , π ] = [NorY , σ ] �⇒ π ∼α σ,

and it follows that |SY /∼α| is a sharp upper bound for the number of functionally non-equivalent
permutation SDS maps obtainable by varying the update sequence.

Functional equivalence can also be characterized through acyclic orientations. An
orientation of Y is a map OY : e[Y ] −→ v[Y ] × v[Y ] that sends an edge {i, j} to either
(i, j) or (j, i). Let Acyc(Y ) denote the set of acyclic orientations of Y , that is, orientations
that contain no directed cycles. In [16] it is shown that there is a bijection

fY : SY /∼α −→ Acyc(Y ), (2.6)

a specific example of how dynamics properties of SDSs are captured by invariants of the base
graph. A permutation π ∈ SY defines a linear order <π on v[Y ] by πk = i <π j = π


iff k < 
. This order defines an acyclic orientation Oπ
Y where Oπ

Y ({v, v′}) equals (v, v′) if
v <π v′ and (v′, v) otherwise. The map fY in (2.6) sends [π ]α ∈ SY /∼α to Oπ

Y . By the above
remark, it follows that

α(Y ) = |Acyc(Y )|
is a sharp upper bound for the number of functionally non-equivalent permutation SDSs that
can be obtained by varying the update sequence. The result can be extended to general word
update sequences w ∈ WY . We do not review this here, but refer to [17].

2.2. Dynamical equivalence

Two finite dynamical systems with maps φ, ψ : Kn −→ Kn are dynamically equivalent if there
exists a bijection h: Kn −→ Kn such that

φ ◦ h = h ◦ ψ. (2.7)

With the discrete topology, the concepts of dynamical equivalence and topological conjugation
coincide. Thus, the difference between functional and dynamical equivalence is that in the
former case the phase spaces are identical, but in the latter case the phase spaces need just be
isomorphic.

It is known that symmetries in the base graph Y give rise to dynamical equivalence.
Specifically, update sequences that are related by an automorphism of the base graph give
rise to dynamically equivalent SDSs [12, 13]. Moreover, the number of orbits ᾱ(Y ) under the
action of Aut(Y ) on SY /∼α given by γ · [π ]α = [γ ∗ π ]α , where

γ ∗ w = (
γ (w1), . . . , γ (wm)

)
, (2.8)

is an upper bound for the number of SDS maps up to dynamical equivalence. These statements
follow since for SDSs with Aut(Y )-invariant vertex functions,

[FY , γ ∗ π ] ◦ γ = γ ◦ [FY , π ] (2.9)

for all π ∈ SY and all γ ∈ Aut(Y ) (see [12]). Via the bijection in (2.6), this action carries over
to an action on the set Acyc(Y ), and the number of orbits is given by

ᾱ(Y ) = 1

|Aut(Y )|
∑

γ∈Aut(Y )

α(〈γ 〉 \ Y ).

Here, 〈γ 〉 \ Y denotes the orbit graph of the cyclic group G = 〈γ 〉 and Y . This bound is
known to be sharp for certain graph classes, but in the general case this is still an open problem
(see [4, 5]).
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Figure 2. The phase spaces of Nor-SDS in example 3.2.

3. Cycle equivalence

Definition 3.1. Two finite dynamical systems with maps φ: Kn
1 −→ Kn

1 and ψ : Km
2 −→ Km

2
are cycle equivalent if there exists a bijection h: Per(φ) −→ Per(ψ) such that

ψ |Per(ψ) ◦ h = h ◦ φ|Per(φ), (3.1)

where ψ |Per(ψ) and φ|Per(φ) denote the restrictions of the maps to the respective sets of periodic
points Per(ψ) and Per(φ). Two maps φ and ψ with identical periodic orbits are functionally
cycle equivalent.

Example 3.2. As an illustration, we continue example 2.2 with Y = Circ4, vertex functions
nor3: F

3
2 −→ F2 and consider the update sequences π = (1, 2, 3, 4), π ′ = (1, 4, 2, 3)

and π ′′ = (1, 3, 2, 4). The phase spaces of the corresponding SDS maps are shown in
figure 2. None of these SDS maps are functionally or dynamically equivalent, but [NorY , π ′]
and [NorY , π ′′] are cycle equivalent, as illustrated in the two rightmost phase spaces in figure 2.
Later we show that for Y = Circ4, there are at most 2 cycle configurations when K = F2.

It is clear that both functional equivalence and dynamical equivalence imply cycle
equivalence. Define the permutations σ, ρ ∈ Sm by

σ = (m, m − 1, . . . , 2, 1), ρ = (1, m)(2, m − 1) · · ·
(⌈m

2

⌉
,
⌊m

2

⌋
+ 1

)
,

and let Cm and Dm be the groups

Cm = 〈σ 〉 and Dm = 〈σ, ρ〉. (3.2)

Both Cm and Dm act on the set of length-m update sequences via (2.3). Define the cyclic
s-shift σs(w) = σ s · w and the reflection ρ(w) = ρ · w = (wm, wm−1, . . . , w2, w1). We can
now state one of our main results.

Theorem 3.3. For any w ∈ WY , the SDS maps [FY , w] and [FY , σs(w)] are cycle equivalent.

Proof. Set Pk = Per[FY , σk(w)]. By the definition of an SDS map, the following diagram
commutes

Pk−1
[FY , σk−1(w)]−−−−−−−→ Pk−1

Fw(k)

 Fw(k)

Pk −−−−−−→
[FY , σk(w)]

Pk

(3.3)
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for all 1 � k � m = |w|. Thus we obtain the inclusion Fw(k)(Pk−1) ⊂ Pk , and since the
restriction map Fw(k): Pk−1 −→ Fw(k)(Pk−1) is an injection, it follows that |Pk−1| � |Pk|. We
therefore obtain the sequence of inequalities:∣∣Per[FY , w]

∣∣ �
∣∣Per[FY , σ1(w)]

∣∣ � · · · �
∣∣Per[FY , σm−1(w)]

∣∣ �
∣∣Per[FY , w]

∣∣,
from which it follows that all inequalities are, in fact, equalities. Since the graph and state
space are finite, the restriction maps Fw(k) in (3.3) are bijections. Clearly (3.1) holds with
h = Fw(k), and the proof follows. �

Theorem 3.3 shows how acting on the update sequence by the cyclic group Cm preserves
the cycle structure of the phase space. We point out again that this result holds for any finite
set K . For K = F2 the cycle structure is also preserved under the action of Dm and is a
consequence of the following result.

Proposition 3.4 ( [12]). Let (Y, FY , w) be an SDS over F2 with periodic points P ⊂ F
n
2 . Then(

[FY , w]
∣∣
P

)−1 = [FY , ρ(w)]
∣∣
P

. (3.4)

The proof rests on the fact that for each vertex function fi , the restriction fi(−; y ′[i]): F2 −→
F2 is a bijection for each fixed choice of y ′[i]. There are only two such maps: the identity map
yi �→ yi and the map yi �→ 1 + yi . From this it follows that composing the two maps in (3.4)
in either order gives the identity map. The next proposition is now clear.

Proposition 3.5. For K = F2 the SDS maps [FY , w] and [FY , ρ(w)] are cycle equivalent.

Thus, for any g ∈ G = Cm the SDS maps [FY , w] and [FY , g · w] are cycle equivalent
where |w| = m. If K = F2, the same statement holds for G = Dm. We now have the following
situation: update sequences π and π ′ with [π ]α �= [π ′]α generally give rise to functionally
non-equivalent SDS maps. However, if there exists g ∈ G, π̄ ∈ [π ]α and π̄ ′ ∈ [π ′]α such that
g · π̄ = π̄ ′, then the classes [π ]α and [π ′]α induce cycle equivalent SDS maps.

As a particular example, let Starn be the graph with vertex set v[Starn] = {0, 1, . . . , n}
and edge set e[Starn] = {{0, i} | 1 � i � n

}
.

Corollary 3.6. Let Y = Starn with n � 2. For a fixed sequence FY of Aut(Y )-invariant Y -local
maps, all permutation SDS maps of the form [FY , π ] are cycle equivalent. Any SDS map of
the form [NorY , π ] with π ∈ SY has precisely one periodic orbit of size three and 2n−1 − 1
periodic orbits of size two.

Proof. We have Aut(Starn) ∼= Sn since the automorphisms of Starn are precisely the elements
of SY that fix the vertex 0. An orbit of Aut(Starn) in SY /∼α contains all equivalence classes [π ]α
for which the positions of 0 in π coincide. Thus for 0 � i � n all permutations that have vertex
0 in the ith position give rise to dynamically equivalent SDS maps. Pick π = (0, 1, 2, . . . , n).
By corollary 3.5, all permutations that are shifts of π give cycle equivalent SDS maps. The
second part now follows by inspection of one of the possible phase spaces. They are all listed
in [12], but without enumerations of periodic orbits. �

4. Combinatorial constructions for cycle equivalence

4.1. Neutral networks

In the rest of this paper we will only consider permutation update sequences, although it is not
hard to see how this analysis can be extended to systems with general word update sequences.
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Figure 3. The update graph U(Circ4).
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Figure 4. The graphs C(Circ4) and D(Circ4). The dashed lines are edges in D(Circ4) but not in
C(Circ4).

To start, we define two graphs over SY / ∼α whose connected components give rise to cycle
equivalent SDSs for a fixed graph Y and a fixed sequence FY . Since cycle equivalence is a
coarsening of functional equivalence, it is natural to construct these graphs using SY /∼α as
the vertex set rather than SY .

Let C(Y ) and D(Y) be the graphs defined by

v[C(Y )] = SY /∼α, e[C(Y )] = {{[π ]α, [σ1(π)]α} | π ∈ SY

}
,

v[D(Y)] = SY /∼α, e[D(Y)] = {{[π ]α, [ρ(π)]α} | π ∈ SY

} ∪ e[C(Y )].

Define κ(Y ) and δ(Y ) to be the number of connected components of C(Y ) and D(Y),
respectively. It is clear that C(Y ) is a subgraph of D(Y) and that δ(Y ) � κ(Y ). By theorem 3.3,
κ(Y ) is a general upper bound for the number of different SDS cycle equivalence classes
obtainable through update sequence variations. For K = F2 it follows from proposition 3.4
that δ(Y ) is an upper bound as well.

Example 4.1. As in example 2.2, let Y = Circ4. The permutation update graph U(Circ4) has
α(Circ4) = 14 connected components as shown in figure 3. The graphs C(Circ4) and D(Circ4)

are shown in figure 4 where the dashed lines represent the edges in e[D(Circ4)] \ e[C(Circ4)].
The vertices in figure 4 are labelled by a permutation in the corresponding equivalence class
in SY / ∼α . The vertices of the cube-shaped component are all singletons in SY / ∼α . The
equivalence classes [1324]Circ4 and [2413]Circ4 both consist of four permutations, while the
remaining four vertices on that component are equivalence classes that contain precisely two
permutations. Clearly, κ(Circ4) = 3 and δ(Circ4) = 2.
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The following result gives insight into the structure of C(Y ) and D(Y).

Proposition 4.2. Let Y be a connected graph on n vertices and let g, g′ ∈ Cn with g �= g′.
Then [g · π ]α �= [g′ · π ]α . If g, g′ ∈ Dn with g �= g′ then [g · π ]α = [g′ · π ]α can hold if and
only if Y is bipartite.

Proof. Assume g �= g′ with [g · π ]α = [g′ · π ]α . By construction, we have g · π = σs(π) and
g′ ·π = σs ′(π). Without loss of generality we may assume s ′ < s. Let V ′ ⊂ V = v[Y ] be the
initial subsequence of vertices in σs ′(π) that occurs at the end in σs(π). If any of the vertices in
V ′ are adjacent to any of the vertices in V \V ′ in Y , it would imply that [σs(π)]α �= [σs ′(π)]α .
The only possibility is that Y is not connected, but this contradicts the assumptions of the
proposition.

Next consider the second statement. From [g · π ]α = [g′ · π ]α it follows from above that
g and g′ lie in different cosets of Cn in Dn. Thus, we may without loss of generality assume
that g = σ s and g′ = ρσ s ′

. Let m = |s ′ − s| and m′ = n − m. If s ′ > s (respectively, s ′ < s)
the first (respectively, last) m elements of g · π and g′ · π are the same but occur in reverse
order. Call the set of these elements V1. The remaining m′ elements occur in reverse order as
well in the two permutations. Let V2 denote the set of these elements. For [g · π ]α = [g′ · π ]α
to hold, there cannot be an edge between any two vertices in V1 or between any two vertices
in V2. Therefore, the graph Y must be a subgraph of K(V1, V2), the complete bipartite graph
with vertex sets V1 and V2. �

Remark 4.3. The pairs (σ s, ρσ s ′
) and (σ s ′

, ρσ s) determine the same bipartite graph in the
above proof. Also, the vertex sets V1 and V2 can only consist of consecutive elements in π .

Remark 4.4. If Y is connected and bipartite then |{[g · π ]α | g ∈ Dn}| = 2n−1. This follows
from the fact that at most two ∼α classes in the first proof argument can coincide as all distinct
pairs g and g′ for which equality holds lead to different sets V1({g, g′}) and V2({g, g′}) modulo
remark 4.3. The existence of two or more distinct partitions of v[Y ] into sets V1 and V2 as
above would imply that Y is not connected.

4.2. Source-to-sink operations and reflections of acyclic orientations

In this section we show how the component structure of C(Y ) is precisely captured through
source-to-sink operations on acyclic orientations. The bijection in (2.6) identifies [π ]α with
Oπ

Y ∈ Acyc(Y ). For any π ∈ [π ′]α , the orientation O
σ1(π)
Y is constructed from Oπ

Y by
converting vertex π1 from a source to a sink. Following [19] we call such a conversion a
source-to-sink operation or a click. It can be easily verified that this gives rise to an equivalence
relation ∼κ on Acyc(Y ). More precisely, two orientations OY , O ′

Y ∈ Acyc(Y ) where OY can
be transformed into O ′

Y by a sequence of clicks are said to be κ-equivalent, and we write

Acyc(Y )/∼κ

for the set of equivalence classes. This observation along with theorem 3.3 shows that
permutations that belong to κ-equivalent acyclic orientations induce cycle equivalent SDSs. By
construction, the source–sink operation precisely encodes adjacency in the graph C(Y ), and the
connected components are in 1–1 correspondence with the κ-equivalence classes. Therefore,
the number of equivalence classes in Acyc(Y ) under the source–sink relation equals κ(Y ) and
is thus an upper bound for the number of cycle equivalent permutation SDS maps [FY , π ] for
a fixed sequence FY .
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If K = F2 then proposition 3.4 shows that reflections of update sequences also induce cycle
equivalent SDSs. On the level of acyclic orientations this corresponds to reversing all edge
orientations. Through the bijection (2.6) this identifies Oπ

Y with the reverse orientation O
ρ(π)

Y ,
the unique orientation that satisfies Oπ

Y ({i, j}) �= O
ρ(π)

Y ({i, j}) for every {i, j} ∈ e[Y ]. If two
acyclic orientations are related by a sequence of source-to-sink operations and reflections, then
they are said to be δ-equivalent.

The notion of κ- and δ-equivalence carries over naturally to update sequences as well. Two
update sequences in SY belonging to ∼α classes on the same connected component in C(Y )

(respectively, D(Y)) are called κ-equivalent (respectively, δ-equivalent). For two κ-equivalent
update sequences π and π ′, there is a sequence of adjacent non-edge transpositions and cyclic
shifts that map π to π ′. This is simply a consequence of the definition of SY /∼α and C(Y ).

We remark that there is a close connection between κ-classes and the structure of conjugacy
classes of Coxeter elements, which we revisit in section 7.

5. Enumeration for κ(Y ) and δ(Y )

In the introduction we remarked that κ and δ may be viewed as complexity measures for SDSs.
To start, we show that δ(Y ) can be characterized in terms of κ(Y ).

Proposition 5.1. Let Y be a connected graph. If Y is not bipartite then δ(Y ) = 1
2κ(Y ). If Y

is bipartite then δ(Y ) = 1
2 (κ(Y ) + 1).

The proof uses the following technical lemma.

Lemma 5.2. The reflection map ρ: SY −→ SY extends to an involution

ρ∗: Acyc(Y )/∼κ−→ Acyc(Y )/∼κ . (5.1)

Proof. By the definition of the update graph U(Y ) it follows that if π, π ′ ∈ SY are adjacent in
U(Y ) then so are ρ(π) and ρ(π ′). By induction it follows that π ∼α π ′ implies ρ(π) ∼α ρ(π ′).
The map ρ therefore extends to a map ρ̂: SY /∼α−→ SY /∼α by ρ([π ]α) = [ρ(π)]α . Likewise,
if OY and O ′

Y are κ-equivalent then so are ρ̂(OY ) and ρ̂(O ′
Y ) (using bijection (2.6)), and ρ̂

extends to ρ∗ as in (5.1) by ρ∗(A) = ρ̂(OA) for any OA ∈ A ∈ Acyc(Y )/∼κ . This map is
clearly an involution since ρ itself is an involution. �

Proposition 5.1 now follows since ρ∗ has no fixed points if Y is not bipartite and has
precisely one fixed point if Y is bipartite. Thus, we always have δ(Y ) = �κ(Y )/2�, and we
also have the following characterization of bipartite graphs.

Corollary 5.3. A connected graph Y is bipartite if and only if κ(Y ) is odd.

In light of proposition 5.1, we focus on the computation of κ(Y ) in the following.

Proposition 5.4 ( [10]). If Y is the disjoint union of graphs Y1 and Y2 or if Y is a graph with
a bridge e = {v, w} connecting the subgraphs Y1 and Y2, then

κ(Y ) = κ(Y1)κ(Y2). (5.2)

Proof. Regarding the first statement, observe that any acyclic orientation of the disjoint union
Y of graphs Y1 and Y2 is of the form OY = (OY1 , OY2). From the definitions, it is clear that
two such acyclic orientations OY and O ′

Y of Y are κ-equivalent if and only if the respective
acyclic orientations over Y1 and Y2 are κ-equivalent.
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If e = {v, w} is a bridge in Y connecting Y1 and Y2, then every acyclic orientation of
Y is of the form OY = (OY1 , (v, w), OY2) or O ′

Y = (OY1 , (w, v), OY2), where OY1 and OY2

are acyclic orientations of Y1 and Y2, respectively. However, it is easy to see that clicking
every vertex of Y1 in OY precisely once will map OY to O ′

Y , from which the second statement
follows. �

For the computation of κ(Y ) we may therefore assume that Y is connected and that every
edge is a cycle edge. Note that for the empty graph on n vertices En we have κ(En) = 1 since
α(En) = 1. The following corollary is immediate from proposition 5.4.

Corollary 5.5. Let Y be a forest. Then κ(Y ) = δ(Y ) = 1.

From corollary 5.5 we get the following perhaps surprising results on dynamics of SDSs
over trees.

Proposition 5.6. Let Y be a forest and FY be a sequence of Y -local functions. Then all
permutation SDS maps [FY , π ] are cycle equivalent.

The proof is clear since κ-equivalent update sequences induce cycle equivalent systems. In
other words, when Y is a forest, all permutation SDS maps of the form [FY , π ] for a fixed FY

share the same cycle configuration. This result may not be that significant if all or most of
the periodic points are fixed points. However, for other functions, such as invertible ones, it is
powerful. The parity functions park: F

k
2 −→ F2 are defined as par(y) = ∑

i yi , modulo 2, and
their corresponding Y -local maps are invertible for every graph Y (see [12]). Let ParY be the
sequence of Y -local functions induced by the parity vertex functions.

Corollary 5.7. If Y is a forest, then for any π, σ ∈ SY , the maps [ParY , π ] and [ParY , σ ] are
dynamically equivalent.

The same result holds for the logical negation of the parity function, which is also invertible.
The next result implies that the quantity κ(Y ) is a Tutte–Grothendieck invariant.

Theorem 5.8 ( [10]). Let e be a cycle edge of Y . Then

κ(Y ) = κ(Y ′
e) + κ(Y ′′

e ), (5.3)

where Y ′
e is the graph obtained from Y by deleting e and Y ′′

e is the graph obtained from Y by
contracting e.

The proof of theorem 5.8 is quite involved, and along with proposition 5.4, it implies that
κ(Y ) = TY (1, 0), where TY (x, y) is the Tutte polynomial [20]. In contrast, it is well known
that the number of acyclic orientations of a graph satisfies α(Y ) = TY (2, 0).

A complete set of cycle equivalence class representatives. For functional equivalence of
SDSs, bijection (2.6) allows us to construct a complete set of representative update sequences.
There is a similar bijection for cycle equivalence. To show this, let Acycv(Y ) denote the acyclic
orientations of Y where vertex v is the unique source. We then have the following proposition.

Proposition 5.9 ( [10]). Let Y be a connected graph. For any fixed v ∈ v[Y ], there is a
bijection

φv: Acycv(Y ) −→ Acyc(Y )/∼κ .
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Y´
Circ

n

Figure 5. A graph Y with an n-handle.

Thus, from the set Acycv(Y ) we can construct a complete set of update sequence representatives
for the possible phase space cycle configurations. Incidentally, since Acycv(Y ) is a transversal
for any v ∈ v[Y ] it follows that each κ-class contains at least n = |v[Y ]| elements and hence
κ(Y ) � α(Y )/n.

We now give examples of the computation of κ . Even though some of these results may be
derived as special cases of more general results, they are needed for the examples in section 6.
We begin with a result for κ(Y ⊕ v), the vertex-join of Y and the vertex v. Recall that the
graph Y ⊕ v is constructed from Y by adding to Y the vertex v and joining this new vertex to
each vertex of Y .

Proposition 5.10. If Y is a graph with e[Y ] �= ∅, then

κ(Y ⊕ v) = 2δ(Y ⊕ v) = α(Y ). (5.4)

Proof. From proposition 5.9, we know that each κ-class of Acyc(Y ⊕ v) contains a
unique acyclic orientation where v is the unique source. Any acyclic orientation of Y thus
yields a unique element of Acycv(Y ⊕ v) and vice versa, so there is a bijection between
Acyc(Y ⊕ v)/∼κ and Acyc(Y ). Finally, since Y contains an edge, Y ⊕ v is not bipartite; hence
κ(Y ⊕ v) = 2δ(Y ⊕ v) and (5.4) follows. �

Corollary 5.11. Let Kn denote the complete graph on n vertices. For n � 2 we have
κ(Kn) = (n − 1)!

Proof. There are 2

(
n
2

)
orientations of Kn, and by the bijection in (2.6), precisely α(Kn) of

these are acyclic, and this is equal to the number of components of the update graph U(Kn).
Since U(Kn) consists of the n! singleton vertices in SY we have α(Kn) = n!, and from
proposition 5.10 it follows that κ(Kn) = α(Kn−1) = (n − 1)! �

A graph Y has an n-handle if it is of the form Y = Y ′ ∪ Circn where Y ′ and Circn share
precisely one edge as illustrated in figure 5.

Proposition 5.12. Let Y be a graph with an n-handle where Y = Y ′ ∪ Circn. Then

κ(Y ) = (n − 1)κ(Y ′). (5.5)

Proof. Let e′ = {v, v′} be the edge shared by Y ′ and Circn and let e be the edge in Circn

incident with v. By applying theorem 5.8 and proposition 5.4 we obtain

κ(Y ′ ∪ Circn) = κ(Y ′) + κ(Y ′ ∪ Circn−1).

Equation (5.5) follows through repeated applications of this recursion process. �
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Figure 6. From left to right: the graphs Circ7, Circ7,2 and Circ′
7,2.

As a simple, special case of proposition 5.12 we obtain κ(Circn) = n − 1. Just take Y ′ to
be the graph with the vertex set v[Y ′] = {1, n} and the edge set {{1, n}} in proposition 5.12.

6. κ(Y ) as a complexity measure

The number of possible orbit structures that one can obtain by varying the update sequence is a
natural measure for system complexity. As we have shown, κ(Y ) is a general upper bound for
this number, and so is δ(Y ) in the case of binary states. Since these bounds are graph measures,
we can characterize the complexity of dynamics in terms of the GDS base graph. As we have
seen, bridge edges do not contribute to periodic orbit variability, so it suffices to consider the
cycles of the graph. As can be seen in the case of Circn, increasing the size of a cycle does not
contribute much to the value of κ , e.g. κ(Circn+1) = κ(Circn) + 1. However, from the result on
graphs with handles it follows that even the addition of a minimal handle doubles the measure
κ , i.e. κ(Y ∪ Circ3) = 2κ(Y ), where Y and Circ3 share precisely one edge.

The following example shows the effect on complexity that results from increasing the
radius of the rules in asynchronous, elementary cellular automata.

Example 6.1 (Asynchronous elementary CA: rule radius versus periodic orbit
complexity). We have seen that κ(Circn) = n − 1. Thus, for any fixed sequence of radius-1
vertex functions the number of distinct periodic orbit configurations is O(n). This changes
dramatically for radius-2 rules. In this case the GDS base graph is Circn,2 defined by

v[Circn,2] = {1, 2, . . . , n} and e[Circn,2] = {{i, j} | 1 � |i − j | � 2
}
,

with index arithmetic modulo n. The auxiliary graph Circ′
n,2 is obtained from Circn,2 by deleting

the edge {2, n}. The case n = 7 is illustrated in figure 6.
For simplicity we set gn = κ(Circn,2) and cn = κ(Circ′

n,2). Successive use of
recurrence (5.3) with edges e1 = {1, n} and e2 = {1, n − 1} for both Circn,2 and Circ′

n,2
gives

cn = cn−1 + 2cn−2 + 2n−2 and gn = gn−2 + cn + 2cn−2,

where c5 = 18, c6 = 46, g5 = 24 and g6 = 64. These recurrence relations are straightforward
to solve with

κ(Circ′
n,2) = [

(3n − 5)2n − 4(−1)n
]
/18

and

κ(Circn,2) = [
(2n − 6)2n + 9 − (2n − 3)(−1)n

]
/6.

Thus, by increasing the rule radius from 1 to 2 we see that the number of distinct periodic orbit
configurations becomes O(n · 2n). The corresponding bounds for δ are easily obtained from
proposition 5.1.
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The effect of graph symmetries. We have seen how non-trivial symmetries in the base graph
give rise to dynamically equivalent SDS maps when the vertex functions are Aut(Y )-invariant.
Since dynamical equivalence implies cycle equivalence we can construct a bound κ̄(Y ) in the
same manner as for ᾱ(Y ). This bound κ̄(Y ) thus reflects the additional cycle equivalences
that are due to graph symmetries and that are applicable in the case of Aut(Y )-invariant vertex
functions. We close with an example that illustrates this and the results of theorem 5.8 and
propositions 5.4, 5.10 and 5.12.

Example 6.2. LetY = Q3
2 be the binary 3-cube, which has an automorphism group isomorphic

to S4 × Z2. It is shown in [4] that α(Q3
2) = 1862 and that ᾱ(Q3

2) = 54. Thus, there are
at most 1862 functionally non equivalent permutation SDSs over Q3

2 for a fixed sequence of
vertex functions. Likewise, there are at most 54 dynamically non equivalent Aut(Q3

2)-invariant
permutation SDSs. It is known in this case that the bound ᾱ(Q3

2) is sharp, since it is realized
for SDSs induced by the nor4-function.

The number of cycle equivalence classes is bounded above by κ(Q3
2), and from the

recursion relation (5.3) we get (with some foresight at each step)

where propositions 5.10 and 5.12 were used in the last step. Since Q3
2 is bipartite we also

derive δ(Q3
2) = (133 + 1)/2 = 67, and thus in the case of K = F2, there are at most 67

cycle classes for a fixed sequence of vertex functions. Straightforward (but somewhat lengthy)
calculations show that κ̄(Q3

2) = δ̄(Q3
2) = 8. In conclusion, we have

α(Q3
2) = 1862, ᾱ(Q3

2) = 54, κ(Q3
2) = 133, δ(Q3

2) = 67, κ̄(Q3
2) = δ̄(Q3

2) = 8.

Thus, if FY is a sequence of Aut(Q3
2)-invariant Y -local functions, there are at most eight

different periodic orbit configurations for permutation SDS maps [FY , π ] up to isomorphism.
Moreover, because κ̄(Q3

2) = δ̄(Q3
2), taking vertex states from K = F2 does not improve this

bound. In summary, using the various notions of equivalence described in this paper, we have
shown that the 8! = 40 320 different permutation update sequences leads to at most 8 non-
equivalent periodic orbit configurations in the case of Y = Q3

2 and Aut(Y )-invariant vertex
functions. Although over Q3

2, the bound 8 is realized for nor-functions, it is not known if this
bound is sharp for general graphs.

This example is only meant as an illustration, and a systematic treatment incorporating
the analysis of the functions κ̄ and δ̄ for general graphs will be pursued elsewhere.

7. Summary

In this paper we have given an overview of GDSs and have shown how shifts and reflections
of update sequences give rise to SDSs with equivalent long-term dynamics. Additionally, we
have shown how to bound the number of periodic orbit configurations and have derived several
properties of this bound κ(Y ). For binary states we have shown how δ(Y ) is a sharper bound.
Both quantities κ and δ can serve as graph measures for dynamical complexity. This work
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follows the broad research theme for GDSs which is to link the defining properties such as the
graph structure and the global dynamics of the GDS map.

Moreover, we have shown how shifts of update sequences correspond to source-to-sink
conversions in acyclic orientations. Source-to-sink conversions also appear in the context of
Coxeter theory (see, e.g., [7] for definitions). For a Coxeter group with Coxeter graph Y , the
number of conjugacy classes of Coxeter elements (see [18]) is also bounded above by κ(Y ),
e.g. [19]. In general, it is not known if κ(Y ) is a sharp bound, but it was shown to hold true
for (unlabelled) unicyclic graphs by Shi in [19]. Recently, in [11], we proved the sharpness
without the unicyclic assumption. This extends Shi’s solution of the conjugacy problem to
a large class of Coxeter groups, which includes all simply-laced Coxeter groups—those with
arbitrary (unlabelled) Coxeter graph. This is an explicit example of how this new connection
between Coxeter theory and SDSs has already led to new results on Coxeter groups, and
likewise it could be very helpful in further exploring the properties of asynchronous GDSs.

In this paper, we have not explored the question of when κ (and δ when K = F2) is a sharp
bound. That is, for an arbitrary graph Y , does there exist a sequence of vertex functions whose
number of non-equivalent orbit configurations equals κ(Y )? Proving this would require one
to construct such functions for any given graph. We have also omitted computational aspects
related to cycle equivalence. For results on complexity theoretical properties of SDS, see [2, 3],
where fixed point reachability and other problems related to computational issues are analysed.
Additional future work includes extending our results from permutation update sequences to
general word update sequences, as well as further exploring the effects of symmetries of the
base graph and the computation of the bounds κ̄ and δ̄ as illustrated in example 6.2.
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