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Abstract. In this paper we study the equivalence relation on the set of acyclic
orientations of a graph Y that arises through source-to-sink conversions. This
source-to-sink conversion encodes, e.g. conjugation of Coxeter elements of a
Coxeter group. We give a direct proof of a recursion for the number of equiv-
alence classes of this relation for an arbitrary graph Y using edge deletion
and edge contraction of non-bridge edges. We conclude by showing how this
result may also be obtained through an evaluation of the Tutte polynomial as
TY (1, 0), and we provide bijections to two other classes of acyclic orientations
that are known to be counted in the same way. A transversal of the set of
equivalence classes is given.

1. Introduction

The equivalence relation on the set of acyclic orientations of a graph Y that arises
from iteratively changing sources into sinks appears in many areas of mathematics.
For example, in the context of Coxeter groups the source-to-sink operation encodes
conjugation of Coxeter elements [11], although in general these conjugacy classes
are not fully understood. Additionally, it is closely related to the reflection functor
in the representation theory of quivers [6]. It has also been studied in the context
of the chip-firing game of Björner, Lovász, and Shor [1]. Moreover, it arises in the
characterization of cycle equivalence for a class of discrete dynamical systems [5],
which was the original motivation for this work.

In [11], the number of equivalence classes κ(Y ) for a graph Y was determined
for graphs that contain precisely one cycle. The main result of this paper is a novel
proof for κ(Y ) for arbitrary graphs in the form of a recurrence relation involving
the edge deletion Y ′

e and edge contraction Y ′′
e of a cycle-edge e in Y . It can be

stated as follows.

Theorem 1.1. Let e be a cycle-edge of Y . Then

(1.1) κ(Y ) = κ(Y ′
e ) + κ(Y ′′

e ) .

Our proof involves a careful consideration of what happens to the κ-equivalence
classes of Acyc(Y ) as a cycle-edge e is deleted. This leads to the construction of the
collapse graph of Y and e, which has as vertex set the κ-classes of Acyc(Y ). We show
that there is a bijection from the set of connected components of this graph to the
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set of κ-equivalence classes of Acyc(Y ′
e ). Moreover, we establish a bijection from the

edge set of the collapse graph to the set of κ-equivalence classes of Acyc(Y ′′
e ). From

this and the fact that the collapse graph is a forest, the recursion (1.1) follows.
Alternatively, the recursion can be derived through an observation made by Vic
Reiner (see [7, Remark 5.5]): the number of equivalence classes of linear orderings
under the operations of (i) transposition of successive, non-connected generators
and (ii) cyclic shifts is counted by (1.1). The bijection between Coxeter elements
and acyclic orientations in [11] provides the connection to our setting. Even though
the connection of this fact to the enumeration of conjugacy classes of Coxeter
elements is straightforward, it does not appear in the literature. Our contribution is
an independent and direct proof of this result by examining the acyclic orientations
of the Coxeter graph. Additionally, our proof provides insight into the structure of
the equivalence classes. We believe that the techniques involved may be useful in
extending current results in Coxeter theory, in particular, some from [11].

Let Y be a finite undirected graph with vertex set v[Y ] = {1, 2, . . . , n} and edge
set e[Y ]. An orientation of Y is represented by a map OY : e[Y ] −→ v[Y ]×v[Y ], and
the graph G(OY ) is obtained from Y by orienting each edge as given by OY . We will
use OY and G(OY ) interchangeably when no ambiguity can arise. An orientation
OY is acyclic if G(OY ) has no directed cycles. The set of acyclic orientations of
Y is denoted by Acyc(Y ), and we set α(Y ) = |Acyc(Y )|, which can be computed
through the well-known recursion relation

(1.2) α(Y ) = α(Y ′
e ) + α(Y ′′

e ) .

As above, Y ′
e and Y ′′

e are the graphs obtained from Y by deletion and contraction
of a fixed edge e, respectively. For the results in this paper we may without loss of
generality assume that v[Y ] is linearly ordered. Let e = {v, w} and assume v < w.
The graph Y ′

e has the same vertex set as Y and the edge set e[Y ] \ {e}. The graph
Y ′′

e has the vertex set v[Y ]\{w}. Its edge set consists of all edges of Y not incident
with w and with an edge {u, v} added for each edge e′ = {u, w} �= e of Y such that
{u, v} �∈ e[Y ]. Thus if Y is simple and loop-free, then so is Y ′′

e . It is known that
there is a bijection between Acyc(Y ) and the set of Coxeter elements of the Coxeter
group whose Coxeter graph is Y [4, 10]. There is also a bijection between Acyc(Y )
and the set of chambers of the graphic hyperplane arrangement H(Y ) [8].

If v is a source of an acyclic orientation OY with degree ≥ 1, then reversing
the orientation of all the edges incident to v maps OY to a new orientation of Y ,
which is also acyclic. This is called a source-to-sink operation, or a click. We define
the equivalence relation ∼κ on the set of acyclic orientations for a fixed graph Y
by OY ∼κ O′

Y if there is a sequence of source-to-sink operations that maps OY to
O′

Y . Two such orientations are said to be click-equivalent, or κ-equivalent. We set
κ(Y ) = |Acyc(Y )/∼κ |.

The set of linear orders on v[Y ] can be represented by the set of permutations of
v[Y ], which we denote as SY . Note that π ∈ SY induces an acyclic orientation Oπ

Y

of Y by Oπ
Y ({i, j}) = (i, j) if i precedes j in π, and Oπ

Y ({i, j}) = (j, i) otherwise.
We write [π]Y for the set of linear orders compatible with the acyclic orientation
OY induced by π. There is a bijection between

{
[π]Y | π ∈ SY

}
and Acyc(Y ); see

e.g. [9]. Let π be the permutation representation of a linear order compatible with
OY . Note that mapping π = (π1, π2, . . . , πn) to π′ = (π2, . . . , πn, π1) corresponds
to converting π1 from a source to a sink in OY . In general, two distinct acyclic
orientations OY and O′

Y are κ-equivalent if and only if there exist π compatible
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with OY and π′ compatible with O′
Y such that π′ can be obtained from π by (i)

cyclic shifts and (ii) transpositions of consecutive elements that are not connected
in Y . For a given Coxeter group W with generators S = {si}n

i=1 and Coxeter graph
Y , there is a similar mapping from SY into the set of Coxeter elements C(W ) and a
bijection from C(W ) to Acyc(Y ); see [10]. Thus, an acyclic orientation represents a
unique Coxeter element, and a source-to-sink operation corresponds to conjugating
that element by a particular generator. Therefore, κ(Y ) is an upper bound for the
number of conjugacy classes of Coxeter elements in a Coxeter group whose Coxeter
graph is Y , and this bound is known to be sharp in certain cases [11]. A simple
induction argument shows that if Y is a tree, then κ(Y ) = 1, and thus all Coxeter
elements in a finite Coxeter group are conjugate [4]. In [11], the author shows
that if Y contains a single cycle of length n, then κ(Y ) = n − 1. This becomes a
straightforward corollary of Theorem 1.1. The recurrence of Theorem 1.1 appears
in several areas of mathematics and corresponds to the evaluation of the Tutte
polynomial at (1, 0), which we describe in Section 4.

2. Preliminary results

We begin our study of κ(Y ) by making the following simple observation recorded
without proof.

Proposition 2.1. Let Y be the disjoint union of undirected graphs Y1 and Y2.
Then

(2.1) κ(Y ) = κ(Y1)κ(Y2) .

In light of this, we may assume that Y is connected when computing κ(Y ). An
edge of Y that is not contained in any simple cycle of Y is a bridge; otherwise it
is a cycle-edge. The graph obtained from Y by deletion of all bridges is the cycle
graph of Y , and it is denoted by Cycle(Y ). Alternatively, an edge e of a connected
graph Y is a bridge if the deletion of e disconnects Y . Bridges do not contribute
to κ(Y ), as shown in the following proposition.

Proposition 2.2. Let Y be an undirected graph, and let e = {v, w} be a bridge of
Y , connecting the disjoint subgraphs Y1 and Y2. Then one has the relation

(2.2) κ(Y ) = κ(Y1)κ(Y2) .

Proof. Each pair of acyclic orientations OY1 ∈ Acyc(Y1) and OY2 ∈ Acyc(Y2) ex-
tends to exactly two acyclic orientations of Y by OY = (OY1 , (v, w), OY2) and
O′

Y = (OY1 , (w, v), OY2) defined in the obvious way. Clearly, every acyclic orienta-
tion of Y is also of one of these forms. Moreover, any click sequence for O′

Y that
contains each vertex of Y2 exactly once and contains no vertex of Y1 maps O′

Y to
OY . Hence OY and O′

Y are click-equivalent. It follows that OY , O′
Y ∈ Acyc(Y ) are

click-equivalent if and only their corresponding acyclic orientations over Y1 and Y2

are click-equivalent, and the equality (2.2) now follows from Proposition 2.1. �

Proposition 2.2 gives us an immediate corollary.

Corollary 2.3. For any undirected graph Y we have κ(Y ) = κ(Cycle(Y )). In
particular, if Y is a forest, then κ(Y ) = 1.

We remark that the first part of this corollary is proven in [11] for the special
case where Cycle(Y ) is a circle. The second part is well-known (see e.g. [4]).
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Let P = (v1, v2, . . . , vk) be a (possibly closed) simple path in Y . The map

(2.3) νP : Acyc(Y ) −→ Z

evaluated at OY is the number of edges of the form {vi, vi+1} in Y oriented as
(vi, vi+1) in OY (positive edges) minus the number of edges oriented as (vi+1, vi)
in OY (negative edges).

Lemma 2.4. Let P be a simple closed path in the undirected graph Y . The map
νP induces a map ν∗

P : Acyc(Y )/∼κ−→ Z.

Proof. Let c(OY ) = O′
Y , where c = cv is a click of a single vertex v. If v is not an

element of P , then clearly νP (OY ) = νP (O′
Y ). On the other hand, if v is contained

in P , then c maps one positive edge into a negative edge and vice versa. The general
case follows by induction on the length of the click-sequence. �

Lemma 2.4 will be used extensively in the proof of the main result in the next
section.

3. Proof of the main theorem

From Proposition 2.2 it is clear that for the computation of κ(Y ) all bridges
may be omitted. We now turn our attention to the role played by cycle-edges in
determining κ(Y ) and to the proof of the recursion relation

(3.1) κ(Y ) = κ(Y ′
e ) + κ(Y ′′

e )

of Theorem 1.1 valid for any cycle-edge e of Y . We set e = {v, w} in the following.
First, define ι1 : Acyc(Y ′′

e )−→Acyc(Y ) to be the map that sends OY ′′ ∈Acyc(Y ′′
e )

to OY ∈ Acyc(Y ) for which OY (e) = (v, w) and for which all other edge orientations
are inherited. The map ι2 : Acyc(Y ′′

e ) −→ Acyc(Y ) is defined analogously but orients
e to be (w, v).

Proposition 3.1. The maps ι1, ι2 : Acyc(Y ′′
e ) −→ Acyc(Y ) extend to well-defined

maps

(3.2) ι∗1, ι
∗
2 : Acyc(Y ′′

e )/∼κ−→ Acyc(Y )/∼κ .

Proof. For φ ∈ {ι1, ι2} and for any click-sequence c of OY ′′ ∈ Acyc(Y ′′) we have
the commutative diagram

(3.3) OY ′′
c ��

φ

��

O′
Y ′′

φ

��

OY
c′ �� O′

Y

where the click-sequence c′ over Y is constructed from the click-sequence c over Y ′′

by insertion of w after (resp. before) every occurrence of v in c for ι1 (resp. ι2). �
Proposition 3.2. Let e be a cycle-edge. For any [OY ′′ ] ∈ Acyc(Y ′′) we have
ι∗1([OY ′′ ]) �= ι∗2([OY ′′ ]).

Proof. Let P be any simple closed path containing e and oriented so as to in-
clude (v, w). From the definition of ι1 and ι2 we conclude that νP

(
ι1(OY ′′)

)
=

νP (ι2
(
OY ′′)

)
+ 2, and the proposition follows by Lemma 2.4. �

Proposition 3.3. Both maps ι∗1 and ι∗2 are injective.
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Proof. We prove the statement for ι∗1. The proof for ι∗2 is analogous. Assume
[OY ′′ ] �∼κ [O′

Y ′′ ] both are mapped to [OY ] under ι∗1. By construction, any elements
OY ′′ and O′

Y ′′ of the respective κ-classes have ι1-images with e oriented as (v, w).
Moreover, for any OY in the image of ι1 there is no directed path from v to w
of length ≥ 2, and there is no directed path from w to v. By a suitable choice of
representatives we may also assume that v is a source in both OY ′′ and O′

Y ′′ . From
this it is clear that v and w belong to successive layers in the acyclic orientations
OY and O′

Y .
Let c be a click-sequence taking ι1(OY ′′) to ι1(O′

Y ′′). Again by construction, we
may assume that any occurrence of v in c is immediately followed by w. This follows
since v and w have to occur equally many times in c, and from the fact that v and
w belong to successive layers in OY and O′

Y . If v and w were not consecutive in
c, it could only be because c is of the form c = . . . v v1 . . . vk w1 . . . wr w . . ., where
the vi’s belong to the same layer as v and the wi’s belong to the same layer as
w. A layer is in particular an independent set, and it is clear that the sequence
c′ = . . . v1 . . . vk v w w1 . . . wr . . . obtained from c by changing the order of v and w
also maps OY to O′

Y .
The click-sequence c′′ obtained from c′ by deleting every occurrence of w is

a click-sequence mapping OY ′′ to O′
Y ′′ , which contradicts the assumption that

[OY ′′ ] �∼κ [O′
Y ′′ ]. �

Consequently, any κ-class [OY ] contains at most one set of the form ι1([OY ′′ ])
and at most one set of the form ι2([OY ′′ ]).

Proposition 3.4. Let e be a cycle-edge of the undirected graph Y . For each pair
of distinct κ-classes [OY ] and [O′

Y ] there is at most one κ-class [OY ′′ ] such that
{ι∗1([OY ′′ ]), ι∗2([OY ′′ ])} = {[OY ], [O′

Y ]}.

Proof. Assume that this is not the case and that there in fact is another class [O′
Y ′′ ]

with the same property. Since both maps ι∗1 and ι∗2 are injective, it then follows
(up to relabeling) that ι∗1([OY ′′ ]) = ι∗2([O

′
Y ′′ ]) = [OY ] and ι∗1([O

′
Y ′′ ]) = ι∗2([OY ′′ ]) =

[O′
Y ]. By the same argument as that in the proof of Proposition 3.2 it follows by

using [OY ′′ ] that ν∗
P ([OY ]) = ν∗

P ([O′
Y ]) + 2. On the other hand, by using [O′

Y ′′ ] it
follows that ν∗

P ([O′
Y ]) = ν∗

P ([OY ]) + 2, which is impossible. �

Definition 3.5. Let e be a cycle-edge of the undirected graph Y . The collapse
graph Ce(Y ) of Y and e is the graph with a vertex set Acyc(Y )/∼κ and edge set{
{ι∗1([OY ′′ ]), ι∗2([OY ′′ ])}

∣
∣ [OY ′′ ] ∈ Acyc(Y ′′)/∼κ

}
.

Note that by Proposition 3.4, the graph Ce(Y ) is simple, and by Proposition 3.2,
it has no loops.

A line graph on k vertices has vertices 1, 2, . . . , k and edges {i, i + 1} for 1 ≤ i ≤
k − 1.

Proposition 3.6. Let e be a cycle-edge of the undirected graph Y . The collapse
graph Ce(Y ) is isomorphic to a disjoint collection of line graphs.

Proof. By Definition 3.5 and the remark following it, each vertex in the collapse
graph has degree ≤ 2. Thus it is sufficient to show that Ce(Y ) contains no cycles.
Let P be a simple closed path in Y containing the edge e. Then two adjacent
κ-classes in Ce(Y ) differ in their ν∗

P -values by precisely 2. Assume Ce(Y ) contains
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the subgraph (up to relabeling)

(3.4) A′′ A A′

ι∗1(A1) ι∗2(A1) = ι∗1(A2) ι∗2(A2)

,

for unique κ-classes A1, A2 ∈ Acyc(Y ′′)/∼κ. Clearly ν∗
P (A′′) = ν∗

P (A) + 2 and
ν∗

P (A′) = ν∗
P (A) − 2. We now have the following situation: (i) the ν∗-values of

adjacent vertices in Ce(Y ) differ by precisely 2, and (ii) the value of ν∗ increases
by 2 across each edge in the A′′-direction relative to A and decreases by 2 across
each edge in the A′-direction relative to A. If the subgraph in (3.4) was a part of
a cycle of length ≥ 3 in Ce(Y ), then by (ii) there must be some pair of adjacent
vertices for which ν∗ differs by at least 4. But this is impossible by (i); hence Ce(Y )
contains no cycles, and the proof is complete. �

Proposition 3.7. Let e be a cycle-edge of the undirected graph Y . Then κ-classes
on the same connected component in Ce(Y ) map to the same κ-class in Acyc(Y ′)/∼κ

upon the deletion of e.

Proof. It is sufficient to show this for adjacent vertices in Ce(Y ) – the general result
follows by induction. Clearly, OY ∼κ O′

Y implies OY ′∼κ O′
Y ′ . Adjacent vertices in

Ce(Y ) contain elements that only differ in their orientations of e and hence become
κ-equivalent upon the deletion of e. The result follows. �

Proposition 3.8. There is a bijection between the connected components in Ce(Y )
and Acyc(Y ′

e )/∼κ.

Proof. Let nc denote the number of connected components of Ce(Y ). By Proposi-
tion 3.7 if [OY ] and [O′

Y ] are connected in Ce(Y ), then both classes are contained
in the same κ-class over Y ′, and thus nc ≤ κ(Y ′).

It is clear that a κ-class contains all acyclic orientations for which there are rep-
resentative permutations that are related by a sequence of adjacent transpositions
of non-connected vertices in Y and cyclic shifts. Upon deletion of the cycle-edge
e the adjacent transposition of the endpoints of e becomes permissible, and thus
two distinct κ-classes in Y containing acyclic orientations that only differ on e are
contained within the same κ-class over Y ′. By reference to the underlying permuta-
tions, it follows that two κ-classes in Y are contained within the same κ-class in Y ′

if and only if there is a sequence of κ-classes in Y where consecutive elements in the
sequence contain acyclic orientations that differ precisely on e. By the definition
of Ce(Y ) it follows that all κ-classes over Y that merge to be contained within one
κ-class in Y ′ upon deletion of e are contained within the same connected component
of Ce(Y ), and thus nc ≥ κ(Y ′). �

Proof of Theorem 1.1. Upon the deletion of e in Y , two or more κ-classes over Y
may merge to be contained with the same κ-class over Y ′. By Proposition 3.8 the
number of κ-classes over Y ′ equals the number of connected components in Ce(Y ).
If a connected component in Ce(Y ) contains m distinct κ-classes of Y , then by
Proposition 3.4 there are m − 1 unique corresponding κ-classes over Y ′′. Thus for
each component of Ce(Y ) we have a relation precisely of the form (1.1) for the
κ-classes involved. The theorem now follows. �



CONJUGACY CLASSES OF COXETER ELEMENTS 7

4. Related enumeration problems

In this section we relate the problem of computing κ(Y ) = |Acyc(Y )/∼κ | to
two other enumeration problems where the same recurrence holds. We will show
how these problems are equivalent and, additionally, how they all can be com-
puted through an evaluation of the Tutte polynomial. As a corollary we obtain a
transversal of Acyc(Y )/∼κ.

In [2] the notion of cut-equivalence of acyclic orientations is studied. Recall that
a cut of a graph Y is a partition of the vertex set into two classes, v[Y ] = V1 � V2,
and where [V1, V2] is the set of (cut-)edges between V1 and V2. A cut of a directed
graph of the form G(OY ), which we simply refer to as a cut of OY , is oriented
with respect to OY if the edges of [V1, V2] are all directed from V1 to V2 or are all
directed from V2 to V1.

Definition 4.1. Two acyclic orientations OY and O′
Y are cut-equivalent if the set

{e ∈ v[Y ] | OY (e) �= O′
Y (e)} is empty or is an oriented cut with respect to either

OY or O′
Y .

The study of cut-equivalence in [2] was done outside the setting of Coxeter theory,
and here we provide the connection.

Proposition 4.2. Two acyclic orientations of Y are κ-equivalent if and only if
they are cut-equivalent.

Proof. Suppose that distinct elements OY and O′
Y in Acyc(Y ) are cut-equivalent

and, without loss of generality, that all edges of [V1, V2] are oriented from V1 to V2

in OY . A click-sequence containing each vertex of V1 precisely once maps OY to
O′

Y , thus OY∼κ O′
Y .

Conversely, suppose that OY∼κ O′
Y , where O′

Y is obtained from OY by a click-
sequence containing a single vertex v. Then OY and O′

Y are cut-equivalent, with
the partition being {v} � v[Y ] \ {v}. �

Obviously, the recurrence relation in (1.1) holds for the enumeration of both
cut-equivalence and κ-equivalence classes.

Definition 4.3. The Tutte polynomial of an undirected graph Y is defined as
follows. If Y has b bridges, � loops, and no cycle-edges, then TY (x, y) = xby�. If e
is a cycle-edge of Y , then

TY (x, y) = TY ′
e
(x, y) + TY ′′

e
(x, y) .

We remark that it is well-known that the number of acyclic orientations of a
graph Y can be evaluated as α(Y ) = TY (2, 0). It was shown in [2] that the number
of cut-equivalence classes can be computed through an evaluation of the Tutte
polynomial as TY (1, 0), and thus κ(Y ) = TY (1, 0).

It is known that TY (1, 0) counts several other quantities, some of which can be
found in [3]. One of these is |Acycv(Y )|, the number of acyclic orientations of Y
where a fixed vertex v is the unique source. As the next result shows, there is a
bijection between Acyc(Y )/∼κ and Acycv(Y ).

Proposition 4.4. Let Y be a connected graph. For any fixed v ∈ v[Y ], there is a
bijection

φv : Acycv(Y ) −→ Acyc(Y )/∼κ .
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Proof. Since κ(Y ) = |Acyc(Y )/∼κ | = TY (1, 0) = |Acycv(Y )|, it is sufficient to show
that there is a surjection φv : Acycv(Y ) −→ Acyc(Y )/∼κ.

We first prove that each A ∈ Acyc(Y )/∼κ contains at least one element of
Acycv(Y ) by contradiction. Assume that A ∈ Acyc(Y )/∼κ contains no element of
Acycv(Y ), and choose OY ∈ A such that v is a source. Clearly, the assumption
implies that there exists infinite length click-sequences from OY not containing
v. Let c be such a click-sequence, and let V ′ ⊂ v[Y ] be the set containing all
vertices that occur infinitely often in c. Then V ′ �= ∅, and since v �∈ V ′ we have
v[Y ] \ V ′ �= ∅. For such a click-sequence c to exist there can be no edges of the
form {s, t} ∈ e[Y ] with s ∈ V ′ and t ∈ v[Y ]\V ′, and we are forced to conclude that
Y is not connected, a contradiction. Hence any A ∈ Acyc(Y )/∼κ contains at least
one element of Acycv(Y ).

Non-equivalent κ-classes of Y cannot have elements of Acycv(Y ) in common, and
since |Acyc(Y )/∼κ | = |Acycv(Y )|, we conclude that each κ-class of Y contains a
unique element of Acycv(Y ). The map φv : Acycv(Y ) −→ Acyc(Y )/∼κ defined by
φv(OY ) = [OY ] is therefore a surjection and, by the initial comment, a bijection. �

From Proposition 4.4 we immediately obtain:

Corollary 4.5. For any vertex v of Y the set Acycv(Y ) is a transversal of
Acyc(Y )/∼κ.

The results in this section establish an alternative approach for deriving the
recurrence in (1.1). However, our proof offers insight into the structure of the
κ-classes, and it is our hope that this may lead to new techniques for studying
conjugacy classes of Coxeter groups.
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