MATH 3110 - Fall 2015 **Homework 2**

Due: Thursday September 10

Question 1. Chapter 2 of Strang

- 1. If P_1 and P_2 are permutation matrices, so is P_1P_2 . Give examples of:
 - matrices P_1, P_2 of size 3×3 such that $P_1P_2 \neq P_2P_1$, and
 - matrices $P_3 \neq P_4$ of size 3×3 such the $P_3P_4 = P_4P_3$ when the neither of the matrices is the identity matrix.
- 2. Find the A = LU factorizations of the following matrix:

$A = \begin{pmatrix} 2 & -2 & 4 \\ 0 & -2 & 2 \\ 4 & 2 & 4 \end{pmatrix}$

3. If A and B are symmetric matrices, which of the following matrices is symmetric? (Motivate the answer) (3 marks)

(a)
$$A^2 - B^2$$
 (b) $(A + B)(A - B)$ (c) $ABAB$

4. (a) Let
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 5 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Find matrices B, C such that $A = B + C$ with (2 marks)

 $B = B^T$ (symmetric), and $C = -C^T$ (anti-symmetric).

(b) Find formulas for B and C involving A and A^T . We want A = B + C, $B = B^T$ and $C = -C^T$. (1 marks)

Question 2. Chapter 3 of Strang

1. Which of the following subsets of \mathbb{R}^3 are actually subspaces? (Motivate the answers)

(a) The plane of vectors
$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
 with $b_2 = b_3$.
(b) The plane of vectors with $b_1 = b_3 = 1$.
(c) The vectors with $b_1 b_2 = 0$.
(d) All linear combinations of $v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$.

2. The set M of all 2×2 matrices is a vector space. Describe the smallest subspace of M that contains

(a) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

(6 marks)

(4 marks)

(total of 10 marks)

(2 marks)

(2 marks)

(total of 10 marks)