MATH 3110 - Fall 2015

Homework 6

Due: Thursday October 15

Questions. Chapter 4.2 of Strang
(total of 20 marks)

1. Let $S=\left\langle\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\rangle$ be a line of \mathbb{R}^{3}. Project the vectors $b_{1}=\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right)$ and $b_{2}=\left(\begin{array}{l}-5 \\ -7 \\ -3\end{array}\right)$ onto S.
(4 marks)
2. Let $S=\left\langle\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\rangle$ bea line in \mathbb{R}^{3}. Project the following points onto S :
(6 marks)
3. Consider the subset $S=\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \right\rvert\, x_{1}-x_{2}-2 x_{3}=0\right\} \subseteq \mathbb{R}^{3}$.
(a) Prove that S is a subspace of \mathbb{R}^{3}.
(b) Find the dimension of S and give a basis of it.
(c) Consider the basis to be the columns of a matrix A_{1} such that $S=C\left(A_{1}\right)$. Compute the projection matrix P_{1} for S.
(d) Find another basis for S and compute the projection matrix P_{2}. Notice that $P_{1}=P_{2}$, meaning that the projection matrix does not depend on the choice of the basis.
4. Show that if P is a projection matrix, then $I-P$ is a projection matrix.
(Show that $(I-P)^{T}=I-P$ and $(I-P)^{2}=I-P$)
