MATH 3110 - Fall 2017
 Homework 7

Due: October 19, 2017

1. Find dimension and basis of the orthogonal complement $S^{\perp} \subset \mathbb{R}^{3}$ when
(a) $S=\left\langle\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\rangle$
(b) $S=\left\langle\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}-3 \\ -2 \\ -1\end{array}\right)\right\rangle$
2. Let $P \subseteq \mathbb{R}^{4}$ be the plane defined the linear equation $x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0$. Write a basis for P^{\perp} and construct a matrix that has P as nullspace.
(HINT: write this equation in the form $A x=0$.)
3. For each of the following sentences, solve it or motivate if unsolvable.
(a) Find a matrix with $\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$ in both its row space and column space.
(b) Find a matrix with $\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$ in both its row space and nullspace.
(c) Find a matrix with $\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$ in both its column space and nullspace.

Question 2. Chapter 4.2 of Strang

1. Let $S=\left\langle\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\rangle$ be a line of \mathbb{R}^{3}. Project the vectors $b_{1}=\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right)$ and $b_{2}=\left(\begin{array}{l}-5 \\ -7 \\ -3\end{array}\right)$ onto S.
2. Let $S=\left\langle\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\rangle$ be a plane in \mathbb{R}^{3}.
(a) Compute the projection matrix of S.
(b) Project the following points onto S :

$$
b_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), b_{2}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) \text { and } b_{3}=\left(\begin{array}{c}
2 \\
-2 \\
-2
\end{array}\right)
$$

