MATH 3110 - Fall 2017 Homework 7

Due: October 19, 2017

QUESTION 1. Chapter 4.1 of Strang

1. Find dimension and basis of the orthogonal complement $S^{\perp} \subset \mathbb{R}^3$ when

(a)
$$S = \langle \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} \rangle$$
 (b) $S = \langle \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}, \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}, \begin{pmatrix} -3\\ -2\\ -1 \end{pmatrix} \rangle$

- 2. Let $P \subseteq \mathbb{R}^4$ be the plane defined the linear equation $x_1 + 2x_2 + 3x_3 + 4x_4 = 0.$ (3 marks) Write a basis for P^{\perp} and construct a matrix that has P as nullspace. (HINT: write this equation in the form Ax = 0.)
- 3. For each of the following sentences, solve it or motivate if unsolvable.

QUESTION 2. Chapter 4.2 of Strang

(total of 12 marks)

1. Let
$$S = \langle \begin{pmatrix} 1\\2\\3 \end{pmatrix} \rangle$$
 be a line of \mathbb{R}^3 . Project the vectors $b_1 = \begin{pmatrix} 5\\7\\3 \end{pmatrix}$ and $b_2 = \begin{pmatrix} -5\\-7\\-3 \end{pmatrix}$ onto S . (4 marks)

2. Let
$$S = \langle \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix} \rangle$$
 be a plane in \mathbb{R}^3 . (8 marks)

- (a) Compute the projection matrix of S.
- (b) Project the following points onto S:

$$b_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, b_2 = \begin{pmatrix} 2\\1\\1 \end{pmatrix}$$
 and $b_3 = \begin{pmatrix} 2\\-2\\-2 \end{pmatrix}$.

(total of 18 marks)

(6 marks)

(9 marks)