MATH 3110 - Fall 2018 Homework 2

Due: Thursday September 13

QUESTION 1. Chapter 2 of Strang

1. Determine which of the following matrices is invertible and, if invertible, compute the inverse.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & -1 \\ 1 & 2 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -3 & -5 \\ 1 & 3 & 6 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -6 & -10 \\ 1 & 0 & -1 \end{pmatrix}$$

- 2. If P_1 and P_2 are permutation matrices, so is P_1P_2 . Give examples of:
 - matrices P_1, P_2 of size 3×3 such that $P_1P_2 \neq P_2P_1$, and
 - matrices P₃ ≠ P₄ of size 3 × 3 such the P₃P₄ = P₄P₃ when neither of the matrices is the either identity or the zero matrix.
- 3. Find the A = LU factorizations of the following matrix:

$$A = \begin{pmatrix} 1 & 2 & -2 & 1 \\ -1 & 0 & 3 & 0 \\ 1 & 6 & 0 & 4 \\ 0 & 2 & 1 & 1 \end{pmatrix}$$

4. If *A* is a symmetric matrix and *B* is an antisymmetric matrix, which of the following matrices is symmetric? (Motivate the answer) (6 marks)

(a)
$$A^3 - B^3$$
 (b) $ABAB$ (c) $(A + B)(A - B)$

5. (a) Let
$$A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 1 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$
. Find matrices B, C such that $A = B + C$ with (2 marks)

$$B = B^T$$
 (symmetric), and $C = -C^T$ (anti-symmetric).

(b) Find formulas for B and C involving A and A^T . We want A = B + C, $B = B^T$ and $C = -C^T$. (2 marks)

(6 marks)

(8 marks)

(6 marks)

(total of 30 marks)