MATH 3110 - Fall 2018

Homework 2

Due: Thursday September 13

1. Determine which of the following matrices is invertible and, if invertible, compute the inverse.
(8 marks)

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & -1 \\
1 & 2 & 6
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 2 & 3 \\
-1 & -3 & -5 \\
1 & 3 & 6
\end{array}\right), \quad C=\left(\begin{array}{ccc}
1 & 2 & 3 \\
-2 & -6 & -10 \\
1 & 0 & -1
\end{array}\right)
$$

2. If P_{1} and P_{2} are permutation matrices, so is $P_{1} P_{2}$. Give examples of:

- matrices P_{1}, P_{2} of size 3×3 such that $P_{1} P_{2} \neq P_{2} P_{1}$, and
- matrices $P_{3} \neq P_{4}$ of size 3×3 such the $P_{3} P_{4}=P_{4} P_{3}$ when neither of the matrices is the either identity or the zero matrix.

3. Find the $A=L U$ factorizations of the following matrix:

$$
A=\left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
-1 & 0 & 3 & 0 \\
1 & 6 & 0 & 4 \\
0 & 2 & 1 & 1
\end{array}\right)
$$

4. If A is a symmetric matrix and B is an antisymmetric matrix, which of the following matrices is symmetric? (Motivate the answer) (6 marks)
(a) $A^{3}-B^{3}$
(b) $A B A B$
(c) $(A+B)(A-B)$
5. (a) Let $A=\left(\begin{array}{lll}1 & 3 & 3 \\ 1 & 1 & 3 \\ 1 & 1 & 1\end{array}\right)$. Find matrices B, C such that $A=B+C$ with

$$
B=B^{T} \text { (symmetric), and } C=-C^{T} \text { (anti-symmetric). }
$$

(b) Find formulas for B and C involving A and A^{T}. We want $A=B+C, B=B^{T}$ and $C=-C^{T}$. (2 marks)

