# MATH 3110 - Fall 2018 <br> Homework 7 

Due: October 18, 2018

Question 1. Chapter 4.1 of Strang
(total of 20 marks)

1. Find dimension and basis of the orthogonal complement $S^{\perp} \subset \mathbb{R}^{3}$ of the following spaces
(8 marks)
(a) $S=\left\langle\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\rangle$
(b) $S=\left\langle\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}-3 \\ -2 \\ -1\end{array}\right)\right\rangle$
2. Consider the subspace

$$
S=\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \right\rvert\, x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0\right\}
$$

Construct a matrix $A$ such that $P=N(A)$ and write a basis for the orthogonal complement $S^{\perp}$.
3. For each of the following sentences, solve it or motivate if unsolvable.
(a) Find a matrix with $\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$ in both its row space and column space.
(b) Find a matrix with $\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$ in both its row space and nullspace.
(c) Find a matrix with $\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$ in both its column space and nullspace.

## Question 2. Chapter 4.2 of Strang

(total of 10 marks)

1. Let $S=\left\langle\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\rangle$ be a line of $\mathbb{R}^{3}$.
(a) Projects vectors $b_{1}=\left(\begin{array}{c}2 \\ -4 \\ 2\end{array}\right)$ and $b_{2}=\left(\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right)$ onto $S$.
(b) Compute the projection matrix $P$ of $S$ and project the vectors $b_{3}=\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right), b_{4}=\left(\begin{array}{l}-5 \\ -7 \\ -3\end{array}\right)$ onto $S$ with it.
