MATH 3110 - Fall 2018
 Homework 8

Due: Thursday October 25

Question 1. Chapter 4.2 of Strang
(total of 16 marks)

1. Let $S=\left\langle\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\rangle$ be a plane in \mathbb{R}^{3}.
(6 marks)
(a) Compute the projection matrix of S.
(b) Project the following points onto S :

$$
b_{1}=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right), b_{2}=\left(\begin{array}{l}
-2 \\
-1 \\
-1
\end{array}\right) \text { and } b_{3}=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)
$$

2. Determine if the following matrices iare projection matrices (motivate your answer).
(10 marks)
For the projection matrices, find the subspace they project onto and its orthogonal complement (give a basis for each of them).
(a) $A_{1}=\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2}\end{array}\right)$
(b) $A_{2}=\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2}\end{array}\right)$
(c) $A_{3}=\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2}\end{array}\right)$

Question 2. Chapter 4.3 of Strang
(total of 8 marks)

1. Consider the four data points $\binom{0}{0},\binom{1}{8},\binom{3}{8}$ and $\binom{4}{20}$.
(a) Find the best fitting line $y=\alpha+\beta x$ between the points.
(b) Find the best fitting parabola $y=\gamma x^{2}+\delta x+\epsilon$ between the points

Question 3. Chapter 4.4 of Strang
(total of 6 marks)

1. Compute using Gram-Schmidt the orthonormal basis of \mathbb{R}^{4} related to the following basis vectors

$$
v_{1}:=\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right), v_{2}:=\left(\begin{array}{c}
3 \\
0 \\
0 \\
-3
\end{array}\right), v_{3}:=\left(\begin{array}{c}
-2 \\
-2 \\
-2 \\
-2
\end{array}\right) \text { and } v_{4}:=\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right) .
$$

