MATH 3110 - Spring 2014

Homework 2

Due: Feb. 6th (Thursday)

Question 1. Chapter 2 of Strang

(total of 15 marks)

1. If P_1 and P_2 are permutation matrices, so is P_1P_2 . Give examples of:

(2 marks)

- matrices P_1, P_2 such that $P_1P_2 \neq P_2P_1$, and
- matrices P_3 , P_4 such the $P_3P_4 = P_4P_3$ when the neither of the matrices is the identity matrix.
- 2. Find the PA = LU factorizations of the following matrices:

(4 marks)

- $A = \begin{pmatrix} 0 & -2 & 2 \\ 2 & 0 & 2 \\ 4 & 2 & 4 \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} 0 & 0 & 3 \\ 1 & 1 & 9 \\ 2 & 1 & 3 \end{pmatrix}.$
- 3. If A and B are symmetric matrices, which of the following matrices is symmetric? (Motivate the answer) (5 marks)
 - (a) $A^2 B^2$
- (b) (A+B)(A-B) (c) ABA
- (d) ABAB
- (e) A^{-1}
- 4. (a) Let $A = \begin{pmatrix} 9 & -4 & -2 \\ -9 & 6 & -3 \\ 10 & -3 & 9 \end{pmatrix}$. Find matrices B, C such that A=B+C with (2 marks)

 $B = B^T$ (symmetric), and $C = -C^T$ (anti-symmetric).

(b) Find formulas for B and C involving A and A^T . We want A = B + C, $B = B^T$ and $C = -C^T$. (2 marks)

Question 2. Chapter 3 of Strang

(total of 15 marks)

1. Which of the following subsets of \mathbb{R}^3 are actually subspaces? (Motivate the answers)

(6 marks)

(2 marks)

- (a) The plane of vectors $\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ with $b_2 = b_3$.
- (d) All linear combinations of $v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$.
- (b) The plane of vectors with $b_1 = b_3 = 1$.
- (e) All vectors that satisfy $b_1 + b_2 + b_3 = 0$.

(c) The vectors with $b_1b_2=0$.

- (f) all vectors with $b_1 \geq b_2 \geq b_3$.
- 2. The set \mathbb{M} of all 2×2 matrices is a vector space. Describe the smallest subspace of \mathbb{M} that contains (3 marks)
 - (a) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- (c) $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
- 3. (a) Describe the column space of $A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Which subspace is it? (2 marks)
 - (b) Construct a 3 × 3 matrix whose column space contains vectors $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and not $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ (2 marks)
 - (c) Construct a 3×3 matrix whose column space is a line.