MATH 3110 - Spring 2014

Homework 2

Due: Feb. 6th (Thursday)

Question 1. Chapter 2 of Strang

1. If P_{1} and P_{2} are permutation matrices, so is $P_{1} P_{2}$. Give examples of:

- matrices P_{1}, P_{2} such that $P_{1} P_{2} \neq P_{2} P_{1}$, and
- matrices P_{3}, P_{4} such the $P_{3} P_{4}=P_{4} P_{3}$ when the neither of the matrices is the identity matrix.

2. Find the $P A=L U$ factorizations of the following matrices:

$$
A=\left(\begin{array}{ccc}
0 & -2 & 2 \\
2 & 0 & 2 \\
4 & 2 & 4
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{lll}
0 & 0 & 3 \\
1 & 1 & 9 \\
2 & 1 & 3
\end{array}\right)
$$

3. If A and B are symmetric matrices, which of the following matrices is symmetric? (Motivate the answer)
(a) $A^{2}-B^{2}$
(b) $(A+B)(A-B)$
(c) $A B A$
(d) $A B A B$
(e) A^{-1}
4. (a) Let $A=\left(\begin{array}{ccc}9 & -4 & -2 \\ -9 & 6 & -3 \\ 10 & -3 & 9\end{array}\right)$. Find matrices B, C such that $\mathrm{A}=\mathrm{B}+\mathrm{C}$ with

$$
B=B^{T} \text { (symmetric), and } C=-C^{T} \text { (anti-symmetric). }
$$

(b) Find formulas for B and C involving A and A^{T}. We want $A=B+C, B=B^{T}$ and $C=-C^{T}$. (2 marks)

Question 2. Chapter 3 of Strang

1. Which of the following subsets of \mathbb{R}^{3} are actually subspaces? (Motivate the answers)
(a) The plane of vectors $\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ with $b_{2}=b_{3}$.
(d) All linear combinations of $v=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 4 \\ 5\end{array}\right)$.
(b) The plane of vectors with $b_{1}=b_{3}=1$.
(e) All vectors that satisfy $b_{1}+b_{2}+b_{3}=0$.
(c) The vectors with $b_{1} b_{2}=0$.
(f) all vectors with $b_{1} \geq b_{2} \geq b_{3}$.
2. The set \mathbb{M} of all 2×2 matrices is a vector space. Describe the smallest subspace of \mathbb{M} that contains
(a) $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
3. (a) Describe the column space of $A=\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$. Which subspace is it?
(2 marks)
(b) Construct a 3×3 matrix whose column space contains vectors $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and not $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
(c) Construct a 3×3 matrix whose column space is a line.
