MATH 3110 - Spring 2014

Homework 3

Due: Feb. 13th (Thursday)

Questions. Chapter 3 of Strang

1. Prove or disprove the following statements about the vector space \mathbb{M} of $n \times n$ matrices
(a) The set of upper triangular matrices is a subspace of \mathbb{M}.
(b) The set of anti-symmetric matrices, i.e., all A such that $A=-A^{T}$, is a subspace of \mathbb{M}.
(c) The set of invertible matrices, i.e. all A such that $\operatorname{rank}(A)=n$, is a subspace.
(d) The set of singular matrices, i.e., all A such that $\operatorname{rank}(A)<n$, is a subspace.
2. Compute the row reduced echelon form of the following matrices

$$
A=\left(\begin{array}{lllll}
1 & 2 & 2 & 3 & 9 \\
3 & 6 & 1 & 4 & 7 \\
0 & 0 & 1 & 1 & 4
\end{array}\right) \text { and } B=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
2 & 3 & 3 \\
4 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)
$$

3. Find the special solutions of the nullspace of the following matrices

$$
A=\left(\begin{array}{llll}
1 & 0 & 3 & 5 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccc}
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

4. (a) Construct a matrix A (if possible) such that $N(A)$ contains all multiples of $\left(\begin{array}{llll}0 & 1 & 2 & 1\end{array}\right)^{T}$.
(b) Construct a matrix A (if possible) such that

- $C(A)$ contains $\left(\begin{array}{lll}2 & 4 & 2\end{array}\right)^{T}$ and $\left(\begin{array}{lll}1 & -1 & 0\end{array}\right)^{T}$, and
- $N(A)$ contains $\left(\begin{array}{lll}1 & 2 & 2\end{array}\right)^{T}$.
(c) Construct a matrix A (if possible) such that
- $C(A)$ contains $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$ and $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T}$, and
- $N(A)$ contains $\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)^{T}$ and $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$.

5. Find the set of solutions of the following set of linear equations

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3}+3 x_{4}=4 \\
x_{1}+2 x_{2}+3 x_{3}+x_{4}=2 \\
x_{1}+2 x_{2}+3 x_{3}+2 x_{4}=3
\end{array}\right.
$$

