MATH 3110 - Spring 2014

Homework 5

Due: Feb. 27th (Thursday)

Questions. Chapter 3 of Strang

1. Find the dimension and a basis of the following subspaces of the space of $n \times n$ matrices.
(a) Lower triangular matrices.
(b) All symmetric matrices.
(c) All anti-symmetric matrices.
2. Set of real polynomials.
(a) Prove that the set

$$
\mathbb{R}[x]=\left\{p(x)=p_{0}+p_{1} x+\cdots+p_{d} x^{d} \mid p_{0}, \ldots, p_{d} \in \mathbb{R}, d \in \mathbb{N}\right\}
$$

i.e., the set of the polynomials with real coefficients is a vector space.
(b) Prove that the set of polynomials with degree less than or equal to 3 is a subspace of $\mathbb{R}[x]$. Find the dimension and a basis of it.
(c) Same for the set $\{p(x) \in \mathbb{R}[x] \mid p(1)=0\}$.
3. Let $V, W \in \mathbb{R}^{n}$. Prove that if $\operatorname{dim}(V)+\operatorname{dim}(W)>n$, than there exists a nonzero $v \in \mathbb{R}^{n}$ such that

$$
v \in V \cap W
$$

4. Without computing A, find bases for its four fundamental subspaces.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
6 & 1 & 0 \\
9 & 8 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

5. Without computing A, find bases for the row and column space.

$$
A=\left(\begin{array}{ll}
1 & 2 \\
4 & 5 \\
2 & 7
\end{array}\right)\left(\begin{array}{lll}
3 & 0 & 3 \\
1 & 1 & 2
\end{array}\right)
$$

