MATH 3110 - Spring 2014 Homework 6

Due: Mar. 6th (Thursday)

Questions. Chapter 3.1 of Strang

- 1. Find dimension and basis of the space $S^{\perp} \subset \mathbb{R}^3$ when
 - (a) $S = \{0\}$ (b) $S = \langle \begin{pmatrix} 1\\2\\3 \end{pmatrix} \rangle$ (c) $S = \langle \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -3\\-2\\-1 \end{pmatrix} \rangle$

2. Let $P \subseteq \mathbb{R}^4$ be the plane defined the linear equation $x_1 + 2x_2 + 3x_3 + 4x_4 = 0$.	(2 marks)
Write a basis for P^{\perp} and construct a matrix that has P as nullspace.	
3. Find $A^T A$ if the columns of A are unit vectors and all mutually perpendicular.	(4 marks)
4. For each of the following sentences, solve it or motivate if unsolvable.	(6 marks)
(a) Find a matrix with $(1, 4, 2)$ in both its row space and column space.	
(b) Find a matrix with $(1, 4, 2)$ in both its row space and nullspace.	
(c) Find a matrix with $(1, 4, 2)$ in both its column space and nullspace.	

5. Let A be an $n \times m$ matrix. Prove that $(((C(A^T))^{\perp})^{\perp}) = R(A)$. (2 marks)

(total of 20 marks)

(6 marks)