MATH 3110 - Spring 2014

Homework 6

Due: Mar. 6th (Thursday)

Questions. Chapter 3.1 of Strang

1. Find dimension and basis of the space $S^{\perp} \subset \mathbb{R}^{3}$ when
(a) $S=\{0\}$
(b) $S=\left\langle\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\rangle$
(c) $S=\left\langle\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}-3 \\ -2 \\ -1\end{array}\right)\right\rangle$
2. Let $P \subseteq \mathbb{R}^{4}$ be the plane defined the linear equation $x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0$.

Write a basis for P^{\perp} and construct a matrix that has P as nullspace.
3. Find $A^{T} A$ if the columns of A are unit vectors and all mutually perpendicular.
(4 marks)
4. For each of the following sentences, solve it or motivate if unsolvable.
(6 marks)
(a) Find a matrix with $(1,4,2)$ in both its row space and column space.
(b) Find a matrix with $(1,4,2)$ in both its row space and nullspace.
(c) Find a matrix with $(1,4,2)$ in both its column space and nullspace.
5. Let A be an $n \times m$ matrix. Prove that $\left(\left(\left(C\left(A^{T}\right)\right)^{\perp}\right)^{\perp}\right)=R(A)$.

