MATH 3110 - Spring 2014

Homework 7

Due: Mar. 13th (Thursday)

Question 1. Chapter 4.2 of Strang
(total of 14 marks)

1. Let $S=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{T}\right\rangle$ be a line of \mathbb{R}^{3}. Project the vectors $\left(\begin{array}{lll}5 & 7 & 3\end{array}\right)^{T}$ and $\left(\begin{array}{lll}-5 & -7 & -3\end{array}\right)^{T}$ onto S. (3 marks)
2. Consider the subset $S \subseteq \mathbb{R}^{4}$ defined by the equation $x-y-2 z=0$.
(6 marks)
(a) Find the dimension of S and give a basis of it.
(b) Consider the basis to be the columns of a matrix A_{1} such that $S=C\left(A_{1}\right)$. Compute the projection matrix P_{1} for S.
(c) Find another basis for S and compute the projection matrix P_{2}. Notice that $P_{1}=P_{2}$, meaning that the projection matrix does not depend on the choice of the basis.
3. Show that if P is a projection matrix, then $I-P$ is a projection matrix.
4. Let $S \subset \mathbb{R}^{n}$. Show that for every vector $v \in \mathbb{R}^{n}$ there exist two vectors $v_{S} \in S$ and $v_{S^{\perp}} \in S^{\perp}$ such that $v=v_{S}+v_{S^{\perp}}$.

Question 2. Chapter 4.3 of Strang

(total of 6 marks)

1. Consider the four data points $\left(t_{i}, b_{i}\right)=(0,0),(1,8),(3,8)$ and $(4,20)$.

Find the best fitting line $b=C+D t$ between the points.

