MATH 3110 - Spring 2014

Homework 7

Due: Mar. 13th (Thursday)

Question 1. Chapter 4.2 of Strang

(total of 14 marks)

(6 marks)

- 1. Let $S = \langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T \rangle$ be a line of \mathbb{R}^3 . Project the vectors $\begin{pmatrix} 5 & 7 & 3 \end{pmatrix}^T$ and $\begin{pmatrix} -5 & -7 & -3 \end{pmatrix}^T$ onto S. (3 marks)
- 2. Consider the subset $S \subseteq \mathbb{R}^4$ defined by the equation x y 2z = 0.
 - (a) Find the dimension of S and give a basis of it.
 - (b) Consider the basis to be the columns of a matrix A_1 such that $S = C(A_1)$. Compute the projection matrix P_1 for S.
 - (c) Find another basis for S and compute the projection matrix P_2 . Notice that $P_1 = P_2$, meaning that the projection matrix does not depend on the choice of the basis.
- 3. Show that if P is a projection matrix, then I P is a projection matrix. (2 marks)
- 4. Let $S \subset \mathbb{R}^n$. Show that for every vector $v \in \mathbb{R}^n$ there exist two vectors $v_S \in S$ and $v_{S^{\perp}} \in S^{\perp}$ (3marks) such that $v = v_S + v_{S^{\perp}}$.

Question 2. Chapter 4.3 of Strang

(total of 6 marks)

1. Consider the four data points $(t_i, b_i) = (0, 0)$, (1, 8), (3, 8) and (4, 20). (6 marks) Find the best fitting line b = C + Dt between the points.