MATH 3110 - Spring 2014

Homework 8

Due: Mar. 27th (Thursday)

Question 1. Chapter 4.4 of Strang
(total of 10 marks)

1. Find a basis of the plane $2 x+y-2 z=0$ and make it orthonormal.
(3 marks)
2. Using Gram-Schmidt, make the vectors $a_{1}=\left(\begin{array}{l}2 \\ 3 \\ 6 \\ 0\end{array}\right), a_{2}=\left(\begin{array}{l}2 \\ 1 \\ 7 \\ 2\end{array}\right)$ and $a_{3}=\left(\begin{array}{c}-1 \\ 3 \\ 7 \\ 4\end{array}\right)$ orthonormal.
3. Let us prove that orthonormal vectors q_{1}, q_{2}, q_{3} are linearly independent.
(4 marks)
(a) Vector version. Using vector product, prove that if $c_{1} q_{1}+c_{2} q_{2}+c_{3} q_{3}=0$ then $c_{1}=c_{2}=c_{3}=0$.
(Hint: Which vector product leads to $c_{i}=0$ for $i=1,2,3$?)
(b) Matrix version: Show that $Q x=0$ leads to $x=0$.

Question 2. Chapter 5.1 of Strang

1. Let A be a 4×4 matrix with determinant 3 . Compute the determinant of the following matrices.
(a) $(3 A)^{-1}$
(b) $\left((A+A)^{T}-A^{T}\right) * A$
2. Using only properties from Section 5.1, compute the determinant of the following matrices with respect
(4 marks) to the parameter λ. For which values of λ are the matrices singular?
(a) $\left(\begin{array}{lll}\lambda & 1 & 2 \\ \lambda & \lambda & 3 \\ \lambda & \lambda & \lambda\end{array}\right)$.
(b) $\left(\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right)-\lambda I \quad$ where I is the 2×2 identity matrix.
3. If you know that $\operatorname{det}(A)=\left|\begin{array}{l}\text { row } 1 \\ \text { row } 2 \\ \text { row } 3\end{array}\right|=6$, what is the determinant of $B=\left(\begin{array}{c}\text { row } 3+\text { row } 2+\text { row } 1 \\ \text { row } 2+\text { row } 1 \\ \text { row } 1\end{array}\right)$?
