MATH 3110 - Spring 2014

Homework 10

Due: Apr. 10th (Thursday)

Question. Chapter 6.1 and 6.2 of Strang

•

(total of 20 marks)

(6 marks)

(4 marks)

1. Compute the eigenvalues and eigenvectors of the following matrices

(a)
$$A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
 (b) $A_2 = A_1^{-1}$ (c) $A_3 = A_1^2 + 3I$

- 2. Prove that is A is an invertible matrix and λ is an eigenvalue of A, then λ^{-1} is an eigenvalue of A^{-1} . (3 marks)
- 3. Prove that A is a diagonal matrix if and only if the standard basis vectors are all eigenvectors of A. (3 marks)

4. Diagonalize matrix
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 by finding the matrices S and Λ . (4 marks)

5. Diagonalize A and compute $S\Lambda^kS^{-1}$ to prove this formula for A^k

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \text{ and } A^{k} = \frac{1}{2} \begin{pmatrix} 1+3^{k} & 1-3^{k} \\ 1-3^{k} & 1+3^{k} \end{pmatrix}$$