MATH 3110 - Spring 2014

Homework 10
Due: Apr. 10th (Thursday)

Question. Chapter 6.1 and 6.2 of Strang

1. Compute the eigenvalues and eigenvectors of the following matrices
(a) $A_{1}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right)$
(b) $A_{2}=A_{1}^{-1}$
(c) $A_{3}=A_{1}^{2}+3 I$
2. Prove that is A is an invertible matrix and λ is an eigenvalue of A, then λ^{-1} is an eigenvalue of A^{-1}.
3. Prove that A is a diagonal matrix if and only if the standard basis vectors are all eigenvectors of A.
4. Diagonalize matrix $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ by finding the matrices S and Λ.
5. Diagonalize A and compute $S \Lambda^{k} S^{-1}$ to prove this formula for A^{k}

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \quad \text { and } \quad A^{k}=\frac{1}{2}\left(\begin{array}{cc}
1+3^{k} & 1-3^{k} \\
1-3^{k} & 1+3^{k}
\end{array}\right)
$$

