MATH 3110 - Spring 2014

Homework 12

Due: Apr. 24th (Thursday)

Question. Chapter 6.4-5-6-7 of Strang

1. (a) Find an orthogonal matrix Q that diagonalizes $A=\left(\begin{array}{cc}-2 & 6 \\ 6 & 7\end{array}\right)$. What is Λ ?
(b) Find all orthogonal matrices that diagonalize $A=\left(\begin{array}{cc}9 & 12 \\ 12 & 16\end{array}\right)$.
2. Show that A and B are similar finding M such that $B=M^{-1} A M$.

- $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
- $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), B=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$
- $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right), B=\left(\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right)$

3. The following Jordan matrices have eigenvalues $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0$

$$
J=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad K=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Show that these matrices are not similar, i.e., that if there exists a matrix M such that $J M=M K$, then M is not invertible.
4. Compute the SVD of the matrix

$$
A=\left(\begin{array}{ccc}
\frac{\sqrt{2}}{2} & -1 & 1 \\
0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} & -1 & 1
\end{array}\right)
$$

