MATH 8560 - Spring 2014

Homework 1

Due: Jan. 28th (Tuesday)

Question 1.

(2 marks)
(Alternative proof of the chain rule for entropy)
Let X_{1}, X_{2} and X_{n} be random variables such that $\left(X_{1}, X_{2}, \ldots, X_{n}\right) \sim p\left(x_{1}, \ldots, x_{n}\right)$. Prove that

$$
\left.p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)\right)
$$

Show also that the chain rule for entropy, i.e.,

$$
H\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)
$$

is a consequence of the previous formulation of the joint probability.

Question 2.

(1 marks)
(From Jensen's Inequality)
Let f be a strictly convex function and X a discrete random variable. Prove that if $E[f(X)]=f(E[X])$, then $X=E[X]$ with probability 1 , i.e., X is a constant.

Question 3.

(4 marks)
(Coin flips)
A fair coin is flipped until the first head occurs. Let X denote the number of flips required.

1. Find the entropy $H(X)$ in bits. The following expressions my be useful:

$$
\sum_{i=0}^{\infty} r^{i}=(1-r)^{-1} \text { and } \sum_{i=0}^{\infty} i r^{i}=r(1-r)^{-2}
$$

2. A random variable X is drawn according to this distribution. Find an "efficient" sequence of yes-no questions of the form "Is X contained in the set S ?". Compare $H(X)$ to the expected number of questions required to determine X.

Question 4.

(2 marks)
(Zero conditional entropy)
Show that is $H(Y \mid X)=0$, then Y is a function of X, i.e., for all x such that $p(x)>0$, there exists only one possible value of y such that $p(x, y)>0$.

Question 5.

(6 marks)
(Entropy of a sum)
Let X and Y be random variables that take on values $x_{1}, x_{2}, \ldots, x_{r}$ and $y_{1}, y_{2}, \ldots, y_{s}$, respectively. Let $Z=X+Y$.

1. Show that $H(Z \mid X)=H(Y \mid X)$. Argue that if X, Y are independent, then $H(Y) \leq H(Z)$ and $H(X) \leq H(Z)$. Thus, the addition of independent random variables add uncertainty.
2. Give an example of random variables in which $H(X)>H(Z)$ and $H(Y)>H(Z)$.
3. Under what conditions does $H(Z)=H(X)+H(Y)$?
