MATH 8560 - Spring 2014

Homework 4

Due: Mar. 15 (Tuesday)

Question 1.

(Perfect codes)

Let \mathcal{C} be a perfect $(n, M, d=2 t+1)$ code over \mathbb{F}_{q} and suppose that $0 \in \mathcal{C}$. Show that the cardinality of

$$
|\{c \in \mathcal{C} \mid \operatorname{wt}(c)=2 t+1\}|=\frac{\binom{n}{t+1}(q-1)^{t+1}}{\binom{2 t+1}{t}}
$$

Question 2.

(4 marks)
(Constant weight codes)
Let \mathcal{C} be a $(n, M, d ; w)$ constant-weight code, i.e., a code having only codewords of weight w.

- Prove or disprove: there exists a linear constant-weight code.
- If \mathcal{C} has parameters $(n, M, 2 t+1 ; 2 t+1)$, prove that

$$
M \leq \frac{\binom{n}{t+1}(q-1)^{t+1}}{\binom{2 t+1}{t}}
$$

- When is the bound attained?

Question 3.

(Doubly-extended GRS codes)
A $[n, n-r, d]$ code \mathcal{C} over \mathbb{F} is a doubly-extended GRS code if it is defined by a parity check matrix

$$
H=\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 0 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n-1} & 0 \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n-1}^{2} & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
\alpha_{1}^{r-2} & \alpha_{2}^{r-2} & \cdots & \alpha_{n-1}^{r-2} & 0 \\
\alpha_{1}^{r-1} & \alpha_{2}^{r-1} & \cdots & \alpha_{n-1}^{r-1} & 1
\end{array}\right)\left(\begin{array}{cccc}
v_{1} & 0 & \cdots & 0 \\
0 & v_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & v_{n}
\end{array}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{n-1}$ are distinct elements and v_{1}, \ldots, v_{n} are nonzero elements of \mathbb{F}_{q}.

- Show that \mathcal{C} is MDS.
- Show that \mathcal{C}^{\perp} is also a doubly-extended GRS code.

Question 4.

(Decoding errors and erasures for GRS codes)

Solve Problem 6.11, page 207 of Roth. (Yes, I know!)

