MATH 8560 - Spring 2016

Homework 1

Due: Jan. 28th (Thursday)

Question 1. From Jensen's Inequality.

Let f be a strictly convex function and X a discrete random variable. Prove that if $E[f(X)]=f(E[X])$, then $X=E[X]$ with probability 1, i.e., X is a constant.

Question 2. Coin flips.

A fair coin is flipped until the first head occurs. Let X denote the number of flips required.

1. Find the entropy $H(X)$ in bits. The following expressions my be useful:

$$
\sum_{i=0}^{\infty} r^{i}=(1-r)^{-1} \text { and } \sum_{i=0}^{\infty} i r^{i}=r(1-r)^{-2}
$$

2. A random variable X is drawn according to this distribution. Find an "efficient" sequence of yes-no questions of the form "Is X contained in the set S ?". Compare $H(X)$ to the expected number of questions required to determine X.

Question 3. Zero conditional entropy.

Show that is $H(Y \mid X)=0$, then Y is a function of X, i.e., for all x such that $p(x)>0$, there exists only one possible value of y such that $p(x, y)>0$.

Question 4. Capacity.

Compute the capacities of the following channels:

1. Z-channel: $\mathcal{X}=\mathcal{Y}=\{0,1\}$ and

$$
p(y \mid x)=\left(\begin{array}{c|cc}
x \backslash y & 0 & 1 \\
\hline 0 & 1 & 0 \\
1 & p & 1-p
\end{array}\right)
$$

2. Symmetric channel: $\mathcal{X}=\mathcal{Y}=\{0,1,2\}$ and

$$
p(y \mid x)=\left(\begin{array}{c|ccc}
x \backslash y & 0 & 1 & 2 \\
\hline 0 & 1 / 2 & 1 / 8 & 3 / 8 \\
1 & 3 / 8 & 1 / 2 & 1 / 8 \\
2 & 1 / 8 & 3 / 8 & 1 / 2
\end{array}\right)
$$

3. (Errors and Erasures in a binary channel): $\mathcal{X}=\{0,1\}, \mathcal{Y}=\{0, e, 1\}$ and

$$
p(y \mid x)= \begin{cases}\alpha & \text { if } y=e \\ \epsilon, & \text { if } x \neq y \neq e \\ 1-\alpha-\epsilon, & \text { if } x=y\end{cases}
$$

