MATH 8560 - Spring 2016

Homework 2

Due: Feb. 16th (Thursday)

QUESTION 1. Log likelihood ratio.

Let $S = (\mathbb{F}_2, p(y \mid x), \mathcal{Y})$ be a binary memoryless channel such that $p(y \mid x) \ge 0$ for any $y \in \mathcal{Y}$ and $x \in \mathbb{F}_2$. The *log likelihood ratio* for a $y \in \mathcal{Y}$ is

$$\mu(y) := \log_2\left(\frac{p(y\mid 0)}{p(y\mid 1)}\right).$$

Let \mathcal{C} be a (n, M) code over \mathbb{F}_2 , and define the decoder $\mathcal{D} : \mathcal{Y}^n \to \mathcal{C}$ such that for any $y = (y_1, \dots, y_n) \in \mathcal{Y}^n$

$$\mathcal{D}(y) = \operatorname{argmax}_{c \in \mathcal{C}} \sum_{i=1}^{n} (-1)^{c_i} \mu(y_i).$$

Show that \mathcal{D} is a maximum-likelihood decoder for \mathcal{C} with respect to S.

QUESTION 2. Decoding failure

Show that for every (n, M, d) code C over \mathcal{X} and for every decoder $\mathcal{D} : \mathcal{X}^n \to C$, there is a codeword $c \in C$ and a vector $y \in \mathcal{X}^n$ such that $d(y, c) \leq \lfloor (d+1)/2 \rfloor$ and $\mathcal{D}(y) \neq c$.

QUESTION 3. Some properties of linear codes

Let $\mathcal{C} \subset \mathbb{F}_2^n$ be a [n, k] linear code.

- 1. Show that either any codeword has even weight, or exactly half of them have even weight.
- 2. If C has a codeword of odd weight, then show that the even weight codewords of C form an [n, k-1] linear code.
- 3. Show that either all codewords in C begin with 0, or exactly half of them begin with zero.
- 4. Show that the sum of the weights of all codewords in C is at most $n2^{k-1}$.

QUESTION 4. Puncturing a linear code

Let C be a linear [n, k, d] code over a field \mathbb{F} . For i = 1, ..., n denotes with C_i the code

$$\mathcal{C}_i := \{ (c_1, \dots, c_{i-1}, c_{i+1}, \dots, c_n) \} \mid (c_1, \dots, c_n) \in \mathbb{F}_n \}.$$

The code C_i is said to be obtained by puncturing C at the *i*-th coordinate.

- Show that C_i is a linear $[n-1, k_i, d_i]$ code over \mathbb{F} where $k_i \ge k-1$ and $d_i \ge d-1$.
- Show that there are at least n k indices i for which $k_i = k$.