MthSc 813 Advanced Linear Programming Spring 1999
Midterm Exam

March 5, 1999

This take-home exam is due by 3:00 on Tuesday, March 9, 1999. Sign and return this
cover sheet with your exam.

There are a total of 60 points. Point value is listed next to each question.
You may consult your textbook, class notes, and me. No other sources are allowed.

Mark your answers clearly. Show your work. Unsupported correct answers receive
partial credit.

Be sure to write your name on each page.

Good luck!
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The first rule of discovery is to have brains and good luck. The second rule of
discovery is to sit tight and wait till you get a bright idea. —G. Polya



1. (10 points) A supporting hyperplane for a convex polyhedron P = {z : Az < b} is
a hyperplane H = {x : a’z = ag} such that for all x € P, a’z < ag and for some
x € P,a’x = ay. A face of P is the set F' = P N H for some supporting hyperplane
H.

(a) Show that H is a supporting hyperplane for P if and only if ag is the optimal
objective value for the LP max{a’z : Az < b}.

If Let z* be an optimal solution to the LP, with a’z* = ao. Then clearly
z* € H and for all z € P, a"x < ay.

Only if Suppose H = {x : a’z = ap} is a supporting hyperplane for
P. Then there exists an z* € P such that a’z* = aq. If 2* is not an
optimal solution to the LP, then there exists ¢ such that a”2 > ay,

contradicting the assumption that H is a supporting hyperplane.

(b) Show that F' is a face of P if and only if F' = {z € P : A'x = '}, for some
subsystem A’z <V of Ax <b.

If Let ' ={z € P : Az =1} for some subsystem A’z < b of Az <b
(and assume F # (). Define a” = e A’, ay = b/, and let H = {z :
a’z = ap}. Then every z € F satisfies a’z = ay and every z € P
satisfies alx = T A'x < eT¥

Only if Let F = PN H, where H = {z : a’z = ap} is a supporting
hyperplane, and consider the LP max{a’z : Az < b} and its dual
min{bTy : ATy =a, y > 0}. Let 2* and y* be strictly complemen-
tary solutions (which exist if H is a supporting hyperplane). Then
by complementary slackness, A;z* = b; whenever y* > 0, for any
optimal z*, i.e., for any z* € F'. Note that there exists a y7 > 0 since

a # 0.

2. (10 points) Given a point & and a polyhedron P = {z : Az < b}, the separation
problem is to determine if # € P, and if not, to identify a halfspace H = {x : a’x > ao}
such that P C H and & ¢ H. Show that the separation problem is polynomially
reducible to the problem of solving linear programs. (Hint: Construct a linear program
that has an optimal solution if and only if Az < b. If this system has no solution,
construct a linear program whose solution provides a separating hyperplane for {Z}
and P.)

= Q.

(a) 2 € P iff Az < b iff min{0Tw : w = b — AZ, w > 0} has a feasible
solution. (This is a roundabout way to solve a trivial problem, but it’s
what you have to do if you only have an LP solver.)



(b) If & ¢ P then the system x = &, Az < b has no solution. Following the
construction in Theorem 10.4, the system

1
(1 A" BQ] =0
y> >0
aAcTyl + bTy2 <0

has a solution. This solution can be found by solving the LP min{z7y!+
bIy? g+ ATy? = 0, y*> > 0}. The solver will terminate with a direction
of unboundedness that can be taken as the solution [§' %] to the
system. (Or you can set bounds on the magnitudes of the components
of y' and y? to guarnateee an optimal solution [j' §?].) Then H =
{z : 279! > —bT§%} is a halfspace containing P but not .

We can thus solve the separation problem by solving two LPs whose sizes

are obviously polynomial in the size of Z, A and b.

3. (10 points) Let A be an m x n matrix, and suppose Az < b is infeasible. Show that
there is an infeasible subsystem A’z < b’ consisting of at most n+1 inequalities. (Hint:
Construct an appropriate theorem of alternative.)

The alternative theorem is just Farkas’s Lemma (as given by Vanderbei):
Ax < bis infeasible iff ATy =0, y > 0, b7y < 0 is feasible. After eliminating
dependent rows, the equality system A’ Ty = 0 has at most n rows. Thus the
LP min{07y : A"y =0, b7y = —1, y > 0} has a feasible solution (found
by scaling the components of any solution to the alternative system). By a
version of Theorem 3.4 proved in class, this LP has a BFS with at most n+1
positive variables. Let A”xz = 0" be the subsystem of the original inequality
system corresponding to the strictly positive components of the BFS found
above. By Farkas’s lemma again, this system is infeasible.

4. (10 points) For t € R, let ¢*(t) = min{c’x : Az = b+ b/, x > 0}, and suppose that
¢*(0) is finite. Determine if (*(t) is convex, concave, both, or neither. Justify your
answer.

Let t; and t5 be such that the LP is feasible for right-hand sides b+t and
b+t2b'. Then (*(t) is convex iff aC*(¢1) + (1 — a)C*(t2) > (*(at; + (1 — a)ts)
for 0 < a < 1.

Let 2! be an optimal solution for the LP with RHS b + ¢;b' and 22 be
an optimal solution for RHS b + to0'. Let # = ai! + (1 — «)2?. Tt is easy
to show that & is feasible for the LP with RHS b + (at; + (1 — a)t2)b’, and
actzl + (1 —a)cf'2? = cf's > ¢*(at, + (1 — a)ty).

5. (10 points) For an LP in bounded-variable form, let the vector of upper bounds be
defined by u + te’ for some fixed j. Describe a simplex-based algorithm that will
compute (*(t) for all values of ¢, [; —u; <t < o0.
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The equations for a bounded-variable BF'S are

¢=ckB b+ (¢f — kB L)xp + (¢ — ¢5B™'U)ay
zp =B ' — B 'Lz, — B 'Uxy
T = lL

Ty = Uy.

Suppose that the simplex method terminates with a finite optimal solution
for t = l; — u; (i.e., u; = l;) with optimal solution z*. (If the solution is
unbounded for this condition, it is unbounded for all ¢ > 0. If it is infeasible,
an auxiliary LP can be constructed to identify the smallest value of ¢ for
which the LP is feasible. This construction is left as an exercise for the
reader.). Otherwise, note that ¢; — c5B™*A; < 0 and is unaffected by
changes in u;. Then

(a) Let to =0, g = z*.

(b) If j€ Bor j€ L, then STOP (x, is optimal for all ¢ > ¢y).

(c) Consider increasing x; = u;. We have x5 = B~'b— B~' A ;z;. Perform a
bounded-variable ratio test on zg. If no variable leaves, then STOP (the

current basis is optimal for all values of ¢ > ¢3). Otherwise, suppose z;
leaves and a* is the minimum ratio.

(d) Perform a dual ratio test with x;+ leaving at its bound. Let z;« be the
entering variable. If 7* = 7 then STOP (the current solution is optimal
for all t > to 4 a*). Otherwise, set to := to + o, 2} = u; == u; + o,
and GOTO 5b.

6. (10 points) Consider a primal-dual pair of LPs in symmetric form, and let * and y* be
strictly complementary primal and dual solutions. Prove: every optimal x has z; = 0
whenever zj = 0 and every optimal y has y; = 0 whenever y; = 0.

By complementary slackness, every optimal z is complementary to every
optimal y. In particular, every optimal z is complementary to y*, so has
z; = 0 whenever the dual slack 2] > 0, i.e., whenever z7 = 0. A similar
argument holds for the dual.



