
Linked Graphs with Restricted Lengths

Guantao Chena,b ∗ Shuhong Gaoc † Zhiquan Hua‡
aFaculty of Math. and Stat., Central China Normal University, Wuhan 430079, PRC

bDept. of Math. and Stat., Georgia State University, Atlanta, GA 30303
c Dept. of Math. Sciences, Clemson University, Clemson, SC 29634

Abstract

A graph G is k-linked if G has at least 2k vertices, and for every sequence
x1, x2, . . . , xk, y1, y2, . . . , yk of distinct vertices, G contains k vertex-disjoint paths
P1, P2, . . . , Pk such that Pi joins xi and yi for i = 1, 2, . . . , k. Moreover, the above
defined k-linked graph G is k-linked modulo (m1,m2, . . . , mk) if, in addition, for any k-
tuple (d1, d2, . . . , dk) of natural numbers, the paths P1, P2, . . . , Pk can be chosen such
that Pi has length di modulo mi for i = 1, 2, . . . , k. Thomassen showed that there ex-
ists a function f(m1,m2, . . . , mk) such that every f(m1,m2, . . . ,mk)-connected graph
is k-linked modulo (m1,m2, . . . , mk) provided all mi are odd. For even moduli, he
showed in another article that there exists a natural number g(2, 2, · · · , 2) such that
every g(2, 2, · · · , 2)-connected graph is k-linked modulo (2, 2, · · · , 2) if deleting any
4k − 3 vertices leaves a nonbipartite graph.

In this paper, we give linear upper bounds for f(m1,m2, . . . , mk) and
g(m1, m2, . . . ,mk) in terms of m1,m2, . . . , mk, respectively. More specifically, we
prove the following two results: (i) For any k-tuple (m1,m2, . . . ,mk) of odd positive
integers, every max{14(m1+· · ·+mk)−4k, 6(m1+· · ·+mk)−4k+36}-connected graph
is k-linked modulo (m1, m2, . . . ,mk). (ii) Let 1 ≤ ` ≤ k and let (m1, m2, . . . ,mk) be
a k-tuple of positive integers such that mi is odd for each i with ` + 1 ≤ i ≤ k. If
G is 45(m1 + · · ·+ mk)-connected, then either G has a vertex set X of order at most
2k + 2` − 3 + δ(m1, . . . ,m`) such that G − X is bipartite or G is k-linked modulo
(2m1, 2m2, . . . , 2m`,m`+1, . . . , mk), where

δ(m1, . . . ,m`) =
{

0 if min{m1, . . . , m`} = 1, and
1 if min{m1, . . . , m`} ≥ 2.

Our results generalize several known results on k-parity-linked graphs.
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1 Introduction

We generally follow Diestel [6] for terminology and notation not defined here and consider
simple graphs only. Through out this paper, the vertex and edge sets of a graph G
are denoted by V (G) and E(G), respectively, while the number of vertices and edges
of G are denoted by |G| and ||G||, respectively. Clearly, `(P ) := ||P || is the length of
P if P is a path. Since we are mainly dealing natural numbers in this paper, we let
[1, k] := {1, 2, . . . , k} for each natural number k.

The study of cycles and paths with certain lengths modulo a positive integers began
with a result of Bollobás [1, 2]: for every natural number m and every natural number
d, every graph G with ||G|| ≥ (m+1)m−1

m · |G| contains a cycle of length 2d mod m, which
settled a conjecture of Burr and Erdős [7]. If m is an odd integer, 2d mod m covers all
congruence classes modulo m when d runs over 0, 1, · · ·, m − 1. If m is even and d is
odd, all integers of d mod m are odd and bipartite graphs do not contain cycles of lengths
d mod m. Thomassen [24] improved the result of Bollobás by showing that, for every
natural number m and every natural number d, every graph G with minimum degree
δ(G) ≥ 4d(m + 1) contains a cycle of length 2d mod m. In the same paper, Thomassen
showed that the existence of path systems with prescribed lengths 2d mod m in graphs of
sufficient high connectivity.

A graph is said to be k-linked if it has at least 2k vertices and for every sequence
x1, x2, . . . , xk, y1, y2, . . . , yk of distinct vertices there exist k vertex-disjoint paths P1, · · · , Pk

such that Pi joins xi and yi for i = 1, 2, . . . , k. Moreover, a graph G is said to be k-linked
modulo (m1,m2, . . . ,mk) if G is k-linked and, in addition, for any k-tuple (d1, d2, . . . , dk) of
natural numbers, the paths P1, P2, . . . , Pk can be chosen such that Pi has length di mod mi

for each i ∈ [1, k].

Theorem 1 (Thomassen [24]) For any two natural numbers k and p there exists a
natural number γ(k, p) such that every γ(k, p)-connected graph G is k-linked modulo
(m1,m2, . . . , mk) for any k-tuple (m1,m2, . . . , mk) of old positive integers less than p.

Thomassen actually gave an explicit bound on γ(k, p). In the proof of Theorem 1, a
function η(s, t) is chosen such that (for some s sufficiently larger than both k and p and
t = p!) each graph of minimum degree at least η(s, t) contains a subdivision H of Ks,t

such that each edge of Ks,t corresponds a path of length 1 mod t in H. He proves that

γ(k, p) ≤ ξ2ξ · 2ξ2ξ · 22ξ2ξ

· · ·︸ ︷︷ ︸
s2(2t+1)2t+1−s2 times

where ξ := ξ(s2(2t+1)t) guarantees that a graph with minimum degree at least ξ contains
a subdivision of Ks2(2t+1)t,s2(2t+1)t satisfying the parity condition on the path lengths.
This bound contains many levels of exponentiation, so is enormous. We show that γ(k, p)
can be bounded by a linear function as stated below.
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Theorem 2 Let (m1,m2, . . . , mk) be a k-tuple of odd positive integers and let

f(m1,m2, . . . , mk) = max{14(m1 +m2 + · · ·+mk)−4k, 6(m1 +m2 + · · ·+mk)−4k+36}.

Then every f(m1,m2, . . . ,mk)-connected graph is k-linked modulo (m1,m2, . . . , mk).

The condition that each mi is odd in Theorem 2 is necessary since every complete
bipartite graph is not k-linked modulo (m1,m2, . . . ,mk) if some mi is even. In this case,
for any integer di and ni, if ni ≡ di mod mi then ni and di have the same parity. For any
connected bipartite graph G and let u, v ∈ V (G) and P be a path connecting u and v,
we note that `(P ) is always even if both u and v are in the same partite set and `(P ) is
always odd if u and v are in the different partite sets. Let G be a graph. The bipartite
index bi(G) is the least positive integer b such that there exists an X ⊆ V (G) and |X| = b
so that G−X is bipartite.

A graph that is k-linked modulo (2, 2, . . . , 2) is called a parity k-linked graph.
Thomassen [25] proved that for any integer k, every 2327k

-connected graph G is k-parity-
linked if bi(G) ≥ 4k−3. Thomassen also showed that lower bound “4k−3” of bi(G) is best
possible by constructing the following examples G from a large complete bipartite graph by
adding the edges of a complete graph on 2k−1 vertices to one of partite set and the edges of
a complete graph on 2k vertices minus a perfect matching on the other partite set. Clearly,
these graphs G are not k-parity-linked although they may have very high connectivities.
But the connectivity 2327k

seems to be far from best possible. Thomassen [25] conjectured
that the 2327k

can be lowered to a linear function of k. Kawarabayashi and Reed [18]
verified this conjecture as follows.

Theorem 3 (Kawarabayashi and Reed [18]) For every natural number k, every 50k-
connected graph G is k-parity-linked if bi(G) ≥ 4k − 3.

For any `-tuple (m1, . . . ,m`) of natural numbers, let

δ(m1, . . . ,m`) :=
{

0 if min{m1, . . . ,m`} = 1, and
1 if min{m1, . . . ,m`} ≥ 2.

Combining the techniques developed in [18] and in the proof of Theorem 2, we prove the
following theorem.

Theorem 4 Let (m1,m2, . . . , mk) be a k-tuple of natural numbers such that mi is odd
for each i ∈ [` + 1, k]. If G is 45(m1 + · · · + mk)-connected and bi(G) ≥ 2k + 2` − 3 +
δ(m1, . . . , m`), then G is k-linked modulo (m′

1,m
′
2, . . . ,m

′
k) where

m′
i :=

{
2mi if 1 ≤ i ≤ `, and
mi if ` + 1 ≤ i ≤ k.
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Although we do not believe the connectivity 45(m1 + . . . + mk) is best possible, we
will demonstrate that bi(G) ≥ 2k + 2` − 3 + δ(m1, . . . ,m`) is sharp by the following two
graphs.

(1) Suppose min{m1, . . . , m`} ≥ 2. Let G be a graph obtained from a large complete
bipartite graph by embedding a K2`−1 into a partite set and a K2k to the other partite set.
Clearly, bi(G) ≥ 2k + 2` − 3. Let X := {x1, y1, . . . , xk, yk} be the vertex set of the K2k.
Then G does not contain vertex-disjoint paths P1, P2, . . ., Pk such that Pi connecting xi

and yi for each i ∈ [1, k] and `(Pi) ≡ 3 mod 2mi for each i ∈ [1, `]. So G is not k-linked
modulo (m′

1,m
′
2, . . . , m

′
k).

(2) Suppose min{m1, . . . , m`} = 1. Let H be a graph obtained from a large complete
bipartite graph by embedding a K2`−1 into a partite set and a K2k − M into the other
partite set, where M is a perfect matching of K2k. Clearly, bi(G) = 2k + 2` − 4. Let
M = {xiyi | 1 ≤ i ≤ k}. Then it is not difficulty to check that H does not contain
vertex-disjoint paths P1, · · ·, Pk such that `(Pi) ≡ 1 mod 2mi for each i ∈ [1, `]. So H is
not k-linked modulo (2m1, . . . , 2m`, m`+1, . . . , mk).

By taking ` = k and m1 = · · · = mk = 1 in Theorem 4, we get the following improve-
ment of Theorem 3.

Theorem 5 For every natural number k, every 45k-connected graph G is k-parity-linked
if bi(G) ≥ 4k − 3.

Instead of building one powerful subgraph as did in [24], our basic idea is to establish
a path system such that there exist a few segments in each path that can be replaced by
paths with difference residue. We prove a number theoretical result on sumsets of integers
to ensure the desired path system exists.

The rest of the paper is organized as follows. In the next section, we will state some
related results on graph linkages. In Section 3, we will establish the number theoretical
result that will serve as a foundation for our needs. We will then prove Theorem 2 in
Section 3 and Theorem 4 in Section 4.

2 Related results on connectivities and linkages

Linkage and connectivity are related in a natural way: Every k-linked graph is k-connected.
With a slight push, we can show that every k-linked graph is (2k−1)-connected. Although
the converse is not true, Jung [14] and Larman and Mani [19], independently, proved the
existence of a function f(k) such that every f(k)-connected graph is k-linked. Bollobás and
Thomason [3] showed that every 22k-connected graph is k-linked, which was the firs linear
upper bound on the connectivity implying graphs are k-linked. Recently, Kawarabayashi,
Kostochka and Yu [17] proved that every 12k-connected graph is k-linked. More recently,
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Thomas and Wollan [23] proved that every 10k-connected graph is k-linked. Actually,
they proved the following stronger statement.

Theorem 6 (Thomas and Wollan [23]) For every 2k-connected graph G, if ||G|| ≥
5k|V (G)| then G is k-linked.

The graph obtained from K3k−1 by deleting a matching of k edges is not k-linked. Let
g(G) be the girth of G. Mader [20] proved the following theorem.

Theorem 7 (Mader [20]) There is a constant c such that every 2k-connected graph with
g(G) ≥ c is k-linked.

Recently, Kawarabayashi [15] and [16] showed that the above constant c can be as
small as 7.

Theorem 8 (Kawarabayashi [16]) For every 2k-connected graph G, if g(G) ≥ 7 and
k ≥ 21, then G is k-linked.

We should also mentioned some related work on star diameters of graphs. In the
definition of k-linked graphs, it is required that the k paths link distinct vertices to distinct
vertices. What happens if one allows repetition among the vertices but require the paths
be internally disjoint? A special case is to find internally node-disjoint paths from one
vertex x to k other vertices y1, · · · , yk (which may have repetition). Any collection of
such paths is called a star container. The length of a container is the maximum length
of its paths. The star distance from x to y1, · · · , yk, denoted by d(x; y1, · · · , yw), is the
minimum length among all the star containers from x to y1, · · · , yk. The star diameter of
G is defined to be the maximum of d(x; y1, · · · , yk) for all vertices x, y1, · · · , yk. Containers
and star diameters of graphs are studied in several papers, see for example [12, 13] for
general graphs and [9, 10] for Cayley graphs over Abelian groups

3 Sumsets of integers

Let m ≥ 2 and k ≥ 1 be two integers and let A1, A2, . . ., Ak be k nonempty sets of
integers. The sumset A1 + A2 + · · ·+ Ak is defined as:

A1 + A2 + · · ·+ Ak = {a1 + a2 + · · ·+ ak | ai ∈ Ai, i ∈ [1, k]}.
In the following, we require that 0 is in each subset Ai, so the sumset contains all Ai.

For a positive integer m, Z/(m) denote the congruence classes of integers modulo m.
We often use 0, 1, · · · ,m − 1 as the representatives of all the classes and simply write
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Z/(m) = {0, 1, · · · ,m − 1}. For any set A of integers, we denote by A mod m for the set
{a mod m|a ∈ A}. We are interested in the case when Z/(m) = A1+A2+ · · ·+Ak mod m,
that is, every congruence class of Z/(m) is represented by an integer in A1 +A2 + · · ·+Ak.
Erdős and Heilbronn studied the case when m = p is a prime and each Ai has two elements.

Theorem 9 (Erdős and Heilbronn [8]) Let p be a prime number and let Ai = {0, ai},
i = 1, 2, · · · , k, where a1, a2, · · ·, ak are nonzero and distinct modulo p. If k ≥ 3

√
6p, then

Z/(p) = A1 + A2 + · · ·+ Ak mod p.

Cauchy and Devenport obtained the following result for the case m = p is a prime.

Theorem 10 (Cauchy and Davenport [4, 5]) Let p be a prime number and let A and
B be two subsets of Z/(p). Then |A + B| ≥ min{p, |A|+ |B| − 1}.

Applying the above result, Olson [21] obtained the following result, which was stated
more generally in term of the finite abelian group.

Theorem 11 (Olson [21]) Let p be a prime and let a1, · · · , ap−1 be p − 1 nonzero in-
tegers (not necessarily distinct) such that ai 6≡ 0 mod p for each i ∈ [1, p − 1]. Then,∑`

i=1{0, ai} mod m = Z/(m).

We generalize Theorem 11 from prime to general natural numbers. This generalization
provides a foundation for our results on linkage with modulo constrains. In order to state
our generalization, the following lemma is needed.

Lemma 1 Let m ≥ 2 be a positive integer and let A ⊂ Z such that for each prime
factor p of m there is a ∈ A such that a is not divisible by p. Then, for any S ⊂ Z, if
S + A ≡ S mod m then S ≡ {0, 1, ..., m− 1} mod m.

Proof. Since all the computation below is done in Z/(m), we’ll omit the word “mod m”.
We may assume that the integers in S are reduced modulo m, so S is a subset of Z/(m).
For any prime factor p of m, let a ∈ A not divisible by p. Then the additive subgroup Hp

of Z/(m) generated by a has order divisible by pe where pe is the highest power of p in m.
Now the equation S+A = S implies that a+r in S for all r ∈ S. So for any r ∈ S, we have
a + r ∈ S, which in turn implies a + (a + r) = 2a + r ∈ S, and 3a + r ∈ S, . . . ,ma + r ∈ S.
Hence the coset r + Hp is contained in S. This means that S is a union of cosets of Hp.
This implies that |S| is a multiple of |Hp|, hence |S| is divisible by pe. Since this is true for
each prime factor p of m, we see that |S| is divisible by m. But S has at most m elements
(mod m). We see that S has exactly m elements mod m, so the lemma follows. 2

6



Theorem 12 Let m ≥ 2 be a positive integer and A1, ..., Am−1 be subsets of Z each
containing 0. If for each prime factor p of m and for each i there is an element ai ∈ Ai

not divisible by p, then Z/(m) = A1 + · · ·+ Am−1 mod m.

Proof. Let Si = A1 + · · ·+ Ai mod m for each 1 ≤ i ≤ m− 1. All the sums are computed
modulo m, namely in Z/(m). Since 0 ∈ Ai for each 1 ≤ i ≤ m− 1, we have

S1 ⊆ S2 ⊆ · · · ⊆ Sm−1 ⊆ Z/(m).

If Si = Si+1, i.e. Si = Si + Ai+1 for some i < m − 1, then Lemma 1 tells us that Si is
already equal to Z/(m), hence Sm−1 = Z/(m).

Otherwise Si+1 contains at least one more element than Si for each i < m− 1. Hence
Sm−1 has at least

m− 2 + |S1| = m− 2 + |A1| ≥ m− 2 + 2 = m

elements, which means Sm−1 = Z/(m) as claimed. 2

4 Proof of Theorem 2

The following lemma plays a key role in our operations on path adjustments to obtain a
path with the desired length.

Lemma 2 Let m ≥ 3 be an odd integer, G be a graph, and

R := u1v1w1z1u2v2w2z2 · · ·um−1vm−1wm−1zm−1um

be a path in G from u1 to um. If there are vertex-disjoint paths P1, P2, . . . , Pm−1, Q1, Q2, . . .,
Qm−1 such that Pi joins ui with wi, Qi joins vi with zi, V (Pi ∩ R) = {ui, wi}, and
V (Qi ∩ R) = {vi, zi} for each i = 1, 2, . . . , m− 1, then for each integer d there exists a
path Rd from u1 and um such that `(Rd) ≡ d mod m.

Proof. Let p1, . . . , pr be all distinct prime factors of m. Since m is odd, pj ≥ 3 for each
1 ≤ j ≤ r. For each i = 1, 2, . . . , m− 1 and j = 1, . . . , r, set

Rij =





ui
−→
Piwizi if `(Pi) 6≡ 2 mod pj ,

uivi
−→
Qizi, if `(Qi) 6≡ 2 mod pj , or

ui
−→
Piwivi

−→
Qizi, if `(Pi) ≡ `(Qi) ≡ 2 mod pj .

Then, `(Rij) 6≡ `(R[ui, zi]) = 3 mod pj . Let aij be an integer with 1 ≤ aij ≤ m− 1 such
that

aij ≡ `(Rij)− `(R[ui, zi]) mod m.
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Then,

aij 6≡ 0 mod pj . (1)

For i = 1, 2, . . . , m− 1, set

Ai = {0} ∪ {aij | for all 1 ≤ j ≤ r}

Note that aij1 = aij2 may happen for j1 6= j2. By Lemma 12, A1 + · · ·+ Am−1 mod m =
Z/(m). So, there exists a subset I ⊆ [1,m − 1] and there exists aiji ∈ Ai − {0} for each
i ∈ I such that

d− `(R) ≡
∑

i∈I

aiji mod m.

Let Rd be the path obtained from R by replacing ∪i∈IR[ui, zi] with ∪i∈IRiji [ui, zi]. Then,

`(Rd) = `(R) +
∑

i∈I

(`(Riji [ui, zi])− `(R[ui, zi]))

= `(R) +
∑

i∈I

aiji

≡ d mod m.

This completes the proof of Lemma 2. 2

Now we are ready to prove Theorem 2. Let G be any f(m1,m2, . . . , mk)-connected
graph, X a set of 2k specified vertices {x1, x2, . . . , xk, y1, y2, . . . , yk}, and (d1, d2, . . . , dk)
be a k-tuple of natural numbers. We wish to find k disjoint paths T1, T2, . . . , Tk such that
Ti joins xi and yi and `(Ti) ≡ di mod m for each 1 ≤ i ≤ k. We distinguish the following
two cases.

Case 1. G −X contains m1 + · · · + mk − k vertex-disjoint cycles {Ciji}1≤i≤k,1≤ji≤mi−1

such that |Ciji | ≤ 6 for each i ∈ [1, k] and ji ∈ [1,mi − 1].

Let ui1 := xi and vimi := yi. For each pair (i, j) with mi > 1 and 1 ≤ j ≤ mi − 1, let
vij be an arbitrary vertex in V (Cij) and let

ui,j+1 =

{
v+
ij , if |Cij | = 3, 4

(v+
ij)

+, if |Cij | = 5, 6,

where v+
ij is the successor of vij in Cij . Set aij = `(vij

←−
Cijui,j+1)− `(vij

−→
Cijui,j+1). Then,

aij =
{

1, if |Cij | = 3, 5
2, if |Cij | = 4, 6 .

Let X∗ := ∪k
i=1 ∪mi−1

j=1 (V (Cij)− {vij , ui,j+1}) and G∗ = G−X∗. Since |Cij | ≤ 6 for each
i ∈ [1, k] and j ∈ [1,mi − 1], we have that |X∗| ≤ ∑k

i=1 4(mi − 1). Since (14
∑k

i=1 mi −
4k)−∑k

i=1 4(mi − 1) = 10
∑k

i=1 mi, G∗ is 10(m1 + · · ·+ mk)-connected. By Theorem 6,
G∗ is (m1 + · · ·+ mk)-linked and hence there exist (m1 + · · ·+ mk) vertex-disjoint paths
{Piji}1≤i≤k,1≤ji≤mi in G∗ such that Pij joins uij and vij (See Figure 1).
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For each i = 1, 2, · · · , k, set

Ri :=
{

ui1
−→
Pi1vi1 if mi = 1,

ui1
−→
Pi1vi1

−→
Ci1ui2 · · ·ui,mi−1

−−−−→
Pi,mi−1vi,mi−1

−−−−→
Ci,mi−1uimi

−−→
Pimivimi if mi > 1.

Since aij ∈ {1, 2}, it cannot be divided by any prime factor of mi. By Theorem 12, there
exist εi1, εi2, . . . , εi,mi−1 ∈ {0, 1} such that

mi−1∑

j=1

εijaij ≡ di − `(Ri) mod mi.

Let Ti be the path obtained from Ri by replacing vij
−→
Cijui,j+1 with vij

←−
Cijui,j+1 for each j

with εij = 1. Then,

`(Ti) ≡ `(Ri) +
mi−1∑

j=1

εijaij ≡ di mod mi.

So, {T1, T2, . . . , Tk} is the set of desired paths.

Case 2. G−X contains at most m1 + · · ·+ mk − k − 1 vertex-disjoint cycles of order at
most 6.

In this case, there exists an X∗ ⊆ V (G)−X such that |X∗| ≤ 6(m1+· · ·+mk−k−1) and
the girth of Ĝ := G−(X∪X∗) is at least 7. Since G is max{14(m1+· · ·+mk)−4k, 6(m1+
· · · + mk) − 4k + 36}-connected, Ĝ is max{8(m1 + · · · + mk) + 6, 42}-connected. Since
g(Ĝ) ≥ 7, by Theorem 8, Ĝ is 4(m1 + · · ·+ mk)-linked. By using (2m1 + · · ·+ 2mk − k)-
linkage of Ĝ, we will construct the set {T1, T2, . . . , Tk} of required paths in G − X∗ as
follows.

First, we choose 2k distinct vertices u11, u21, . . . , uk1, w1m1 , w2m2 , . . . , wkmk
in Ĝ such

that for each i, ui1 is adjacent to xi and wimi is adjacent to yi. This is doable since every
vertex of G has at least 8(m1 + · · ·+ mk) + 6 neighbors in Ĝ.
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Next, we choose k vertex disjoint path R1, R2, . . . , Rk in Ĝ − {w1m1 , w2m2 , . . .,wkmk
}

such that

Ri :=
{

ui1 if mi = 1,
ui1vi1wi1zi1 · · ·ui,mi−1vi,mi−1wi,mi−1zi,mi−1uimi if mi > 1.

This is possible since Ĝ is 8(m1 + · · ·+ mk)-connected.

Since Ĝ is 4(m1+· · ·+mk)-linked, there exist (2m1+2m2+· · ·+2mk−k) vertex-disjoint
paths {Piji}1≤i≤k,1≤ji≤mi and {Qiji}1≤i≤k,1≤ji≤mi−1 such that for each i = 1, 2, . . . , k

• Pij joins uij and wij for j = 1, 2, . . . , mi and

• Qij joins vij and zij for j = 1, 2, . . . ,mi − 1.

(See Figure 2).

q q q q q . . . . . . q q q q q q
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xk uk1

vk1

wk1

zk1

uk,mk−1
q vk,mk−1

wk,mk−1

zk,mk−1

ukmk
wkmk yk

Pk1 Pk,mk−1 Pkmk

Qk1 Qk,mk−1
Gk

-

Figure 2

For each i, let Gi be the subgraph of Ĝ induced by ∪mi−1
j=1 (V (Pij ∪ V (Qij) ∪ {uimi}).

Then, G1, G2, . . . , Gk are vertex disjoint subgraphs of Ĝ − {w1m1 , w2m2 , . . . , wkmk
}. By

applying Lemma 2 with G := Gi and R := Ri, we see that Gi contains a path Qi connecting
ui1 and uimi such that

`(Qi) ≡ di − 2− `(Pi,mi) mod mi.

Set Ti := xiui1
−→
Qiuimi

−−→
Pimiwimiyi. Then, T1, T2, . . . , Tk are k vertex-disjoint paths in G∗

such that Ti joins xi and yi, and for each i = 1, 2, . . . , k,

`(Ti) ≡ `(Qi) + 2 + `(Pimi) ≡ di mod mi.

This completes the proof of Theorem 2. 2
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5 Proof of Theorem 4

For a graph G an odd cycle cover is a set of vertices X ⊆ V (G) such that G − X is
bipartite. Recall that the bipartite index bi(G) = min{|X| | X is a odd cycle cover of G}.
In order to prove Theorem 4, we need the following three results.

Theorem 13 (Geelen et al, [11]) For any set S of vertices of a graph G, either

• there are k vertex-disjoint odd S-paths, i.e., k disjoint paths each of which has an
odd number of edges and both its endpoints in S, or

• there is a vertex set X of order at most 2k − 2 such that G − X contains no such
paths.

Theorem 14 Let G be a triangle-free graph and c > 0.1 be a constant such that |G| ≥ 20c
and ||G|| > 50c|G| − 900c2. Then G contains an d18ce-connected subgraph H such that
||H|| ≥ d45c|H|e and minimum degree δ(H) ≥ d50ce.

Proof. Let H be a subgraph of G such that

(a) |H| ≥ 20c,

(b) ||H|| > 50c|H| − 900c2, and

(c) n := |H| is minimal subject to (a) and (b).

We will show that H is as desired.

Claim 1 |H| > 180c.

Since H is triangle-free, by the well-known Turan Theorem on extreme graph theory,
||H|| ≤ n2/4. Solving the inequality 50cn − 900c2 < n2/4, we obtain either n < 20c or
n > 180c. Then n > 180c by condition (a). 2

Claim 2 The minimum degree of H is more than 50c.

Suppose that H has a vertex v with degree at most 50c, and let H ′ be the graph
obtained from H by deleting v. Then, ||H ′|| ≥ ||H|| − 50c > 50c|H ′| − 900c2. Since
c ≥ 0.1, we have |H ′| = n − 1 > 180c − 1 ≥ 20c. So H ′ satisfies (a) and (b) and
|H ′| = |H| − 1 which contradicts (c). 2
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Claim 3 ||H|| > 45c|H|.

Suppose, to the contrary, ||H|| ≤ 45c|H|. Then, 50cn− 900c2 < 45cn, which implies
n < 180c, a contradiction to Claim 1. 2

Claim 4 H is d18ce-connected.

Suppose H is not d18ce-connected. Then, H has a separation (A1, A2) such that
A1\A2 6= ∅ 6= A2\A1 and |A1 ∩A2| ≤ 18c. By Claim 2, |A1|, |A2| ≥ 50c + 1. For
i ∈ 1, 2, let Hi be a subgraph of H with vertex set Ai such that H = H1 ∪H2 and
E(H1) ∩ E(H2) = ∅. If ||Hi|| ≤ 50c|Hi| − 900c2 for both i = 1, 2, then

50cn− 900c2 < ||H1||+ ||H2||
≤ 50c(n + |A1 ∩A2|)− 1800c2

≤ 50cn− 900c2,

a contradiction. Hence, we may assume, without loss of generality, that ||H1|| > 50c|H1|−
900c2. Recall that |H1| = |A1| ≥ 50c + 1. Then H1 is a subgraph of G that contradicts
(c). This completes the proof of Claim 4, so does Theorem 14. 2

The following is an analogue of Lemma 2 for bipartite graphs.

Lemma 3 Let m ≥ 2 be an integer, G be a bipartite graph, and
R := u1v1w1z1 · · ·um−1vm−1wm−1zm−1um be paths in G from u1 to um. If there are vertex-
disjoint paths P1, . . ., Pm−1, Q1, . . . , Qm−1 such that Pj joins uj with wj, Qj joins vj with
zj, V (Pi ∩ R) = {ui, wi}, and V (Qi ∩ R) = {vi, zi} for each j ∈ [1,m − 1], then for each
integer d there exists a path Rd in G connecting u1 and um such that `(Rd) ≡ 2d mod 2m.

Proof. Let p1, . . . , pr be all prime factors of m. For i = 1, . . . ,m− 1 and j = 1, . . . , r, set

Rij =





ui
−→
Piwizi if `(Pi) 6≡ 2 mod 2pj ,

uivi
−→
Qizi if `(Qi) 6≡ 2 mod 2pj , and

ui
−→
Piwivi

−→
Qizi if `(Pi) ≡ `(Qi) ≡ 2 mod 2pj .

Then, `(Rij) 6≡ `(R[ui, zi]) = 3 mod 2pj since 2pj ≥ 4. Since G is bipartite, `(Rij) −
`(R[ui, zi]) is even. Let aij be an integer with 1 ≤ aij ≤ m− 1 such that

`(Rij)− `(R[ui, zi]) ≡ 2aij mod 2m.

Then,

aij 6≡ 0 mod pj . (2)
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By an argument similar to that in the proof of Lemma 2, we can find a path Rd in G
connecting u1 and um such that `(Rd) − `(R[u1, um]) ≡ 2[d − 2(m − 1)] mod 2m. Note
that `(R[u1, um]) = 4(m− 1). So Rd is the desired path. 2

We now turn to the proof of Theorem 4. Let X be a set of 2k specified vertices
{x1, x2, . . . , xk, y1, y2, . . . , yk} of G and let (d1, d2, . . . , dk) be a k-tuple of nonnegative
integers. We wish to find k vertex-disjoint paths T1, T2, . . . , Tk such that Ti joins xi and
yi and `(Ti) ≡ di mod m′

i for each 1 ≤ i ≤ k. We split the proof into two cases according
to bi(G) ≥ 4k + 2`− 1 or bi(G) ≤ 4k + 2`− 2.

Case 1. bi(G) ≥ 4k + 2`− 1 .

Let H be a spanning bipartite subgraph of G with maximum number of edges. As
observed by Erdős, the minimum degree of H is at least d45(m1 + · · ·+mk)/2e, and hence
H has at least d45(m1 + · · ·+ mk)|H|/4e edges.

Applying Theorem 14 with c = 9(m1 + · · ·+mk)/40, we see that H contains a 4(m1 +
· · · + mk)-connected bipartite subgraph K such that ||K|| ≥ 10(m1 + · · · + mk)|K| and
minimum degree δ(G) ≥ 11(m1 + · · ·+mk). By Theorem 6, K is 2(m1 + · · ·+mk)-linked.

We say that a path P in G is a parity breaking path for K if E(P ) ∩ E(K) = ∅ and
K ∪ P contains an odd cycle. This parity breaking path may be just a single edge. Since
K is a connected bipartite graph, for any parity breaking path P for K there exist two
distinct vertices x, y in P such that

• P [x, y] is a parity breaking path for K;

• V (P [x, y]) ∩ V (K) = {x, y};
• For every trail T in K connecting x and y, `(T ) and `(P ) have different parities.

Claim 5 There are at least 2k + ` vertex-disjoint parity breaking paths for K.

Proof. Let S be one of the partite sets of K. Then |S| ≥ δ(K) ≥ 11(m1 + · · ·+ mk) ≥
4k + 2` + 2. We shall apply Theorem 13 to G and S. If there are at least 2k + ` vertex-
disjoint odd S-paths in G, we can clearly find 2k + ` vertex-disjoint parity breaking paths
for K since K is a connected bipartite graph. Otherwise, there is a vertex set R of order
at most 4k + 2`− 2 such that G−R has no any odd S-path. Since |R| ≤ 4k + 2`− 2 and
G is 45(m1 + · · · + mk)-connected, then graph G − R is 2-connected. If there is an odd
cycle C in G − R, then we can take two disjoint paths from C to S − R, and this would
give an odd S-path, a contradiction. This implies that G−R is bipartite, a contradiction
to bi(G) ≥ 4k + 2`− 1. 2

Let Pj = Pj [sj , tj ], j = 1, 2, . . . , 2k + `, be 2k + ` vertex-disjoint parity breaking
paths for K in G such that V (Pj) ∩ V (K) = {sj , tj}. We shall construct k vertex-
disjoint desired paths by using K and P1, P2, . . . , P2k+`. Let E∗ := ∪2k+`

j=1 E(Pj). Since
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G is 45(m1 + · · · + mk)-connected, there are 2k vertex-disjoint paths W={W1, . . . , W2k}
joining X and K. Choose W such that

∑2k
i=1 |E(Wi)− E∗| achieves the minimum value.

For i = 1, 2, . . . , k, we assume Wi joins xi with x′i and Wi+k joining yi with y′i, where xi
′ is

the only vertex of Wi in K and yi
′ is the only vertex of Wi+k in K. Note that if xi ∈ K,

then x′i = xi and Wi = {xi}. Similarly, if yi ∈ K, then y′i = yi and Wi+k = {yi}. Set

J0 = {j | j ∈ [1, 2k + `] and Pj doesn’t intersect any path in W},
J1 = {j | j ∈ [1, 2k + `] and Pj intersects exactly one path in W},
J2 = {j | j ∈ [1, 2k + `] and Pj intersects at least two paths in W}.

Then,

|J0|+ |J1|+ |J2| = 2k + `. (3)

For each j ∈ J2, let W and W ′ be the paths in W that intersect Pj as close as possible
(on Pj) to sj and to tj , respectively. Then, the minimality of

∑2k
i=1 |E(Wi)− E∗| implies

that both W and W ′ follow the path Pj and end at the end-vertices of Pj . Thus,

sj , tj ∈ {x′1, x′2, . . . , x′k, y′1, y′2, . . . , y′k}, ∀j ∈ J2. (4)

For each j ∈ J1, let W be the only path in W that intersect Pj . Then, the minimality of∑2k
i=1 |E(Wi)−E∗| implies that W follow the path Pj and end at one of the end-vertices.

Thus,

{sj , tj} ∩ {x′1, x′2, . . . , x′k, y′1, y′2, . . . , y′k} 6= ∅, ∀j ∈ J1. (5)

It follows from (4) and (5) that |J1| + 2|J2| ≤ 2k. This together with (3) implies |J0| ≥
|J2|+ ` ≥ `.

Renaming P1, P2, . . . , P2k+` if necessary, we assume that J0 ⊇ [1, `]. By using {Pi}1≤i≤`,
{Wi}1≤i≤2k, and 2(m1 + · · · + mk)-linkage of K, we will construct the required paths
T1, T2, . . . , Tk in G as follows.

First, we choose k vertex-disjoint paths R1, R2, . . . , Rk in K∗ := K − ∪`
i=1{si, ti} −

∪k
i=1{y′i} such that

Ri :=
{

ui1 if mi = 1, and
ui1vi1wi1zi1 · · ·ui,mi−1vi,mi−1wi,mi−1zi,mi−1uimi if mi ≥ 2,

where ui1 := x′i. This is possible since minimum degree δ(K) ≥ 11(m1 + · · ·+ mk).

For each i ∈ [1, `], let

αi =
{

0 if x′i and y′i are in the same partite set of K, and
1 otherwise,

and

βi =
{

0 if di ≡ αi + `(Wi) + `(Wi+k) mod 2, and
1 otherwise.

From the definitions above, for each i ∈ [1, `], we have that

αi + `(Wi) + `(Wi+k) ≡ di + βi.
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Set I1 := {i | i ∈ [1, `], βi = 1} and I0 := [1, k]−I1. Since K is 2(m1 + · · ·+mk)-linked,
there exist (2m1 + 2m2 + · · ·+ 2mk − |I0|) vertex-disjoint paths {Pij , Qij}1≤i≤k,1≤j≤mi−1,
{Ti0}i∈I0 and {T (1)

i1 , T
(2)
i1 }i∈I1 in K such that

• Pij joins uij with wij and Qij joins vij with zij for each pair (i, j) with 1 ≤ i ≤ k
and 1 ≤ j ≤ mi − 1,

• Ti0 joins uimi with y′i for each i ∈ I0, and

• T
(1)
i1 joins uimi with si and T

(2)
i1 joins ti with y′i for each i ∈ I1.

(See Figure 3).

q q q q q . . . . . . q q q q
xi ui1

vi1

wi1

zi1

ui,mi−1
q vi,mi−1

wi,mi−1

zi,mi−1

uimi

q q
yi y′i

Wi+k

Wi

q q
ti si

Pi

T
(2)
i1 T

(1)
i1

Pi1 Pi,mi−1

Qi1 Qi,mi−1

Gi
(i∈I1)

-

x′i

q q q q q . . . . . . q q q q
xj uj1

vj1

wj1

zj1

uj,mj−1
q vj,mj−1

wj,mj−1

zj,mj−1

ujmj

q q
yj y′j

Wj+k

Wj

Tj0

Pj1 Pj,mj−1

Qj1 Qj,mj−1

Gj

(j∈I0)

-

x′j
Figure 3

To construct an (xi, yi)-path of length di modulo m′
i, we shall first find an (xi, yi)-path

with length di modulo 2 for each i ∈ [1, `]. Set

Qi =

{
xi
−→
Wix

′
i
−→
Riuimi

−→
Ti0y

′
i
←−−−
Wi+kyi if i ∈ I0, and

xi
−→
Wix

′
i
−→
Riuimi

−−→
T

(1)
i1 si

−→
Piti

−−→
T

(2)
i1 y′i

←−−−
Wi+kyi if i ∈ I1.

Claim 6 For each i ∈ [1, `], Qi is an (xi, yi)-path of length di modulo 2.
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Proof. For each i ∈ [1, `], let

Q′
i = xi

−→
Wix

′
i
−→
Wy′i

←−−−
Wi+kyi,

where W is an arbitrary path in K connecting x′i and y′i. Since K is a bipartite graph, W
has length αi modulo 2. This implies

`(Q′
i) ≡ `(Wi) + αi + `(Wi+k) ≡ di + βi mod 2.

If βi = 0, then `(Qi) ≡ `(Q′
i) ≡ di + βi ≡ di mod 2. Now, assume βi = 1. Then,

`(Qi) + `(Q′
i) = 2`(Wi) + 2`(W ′

i ) + `(Qi[x′i, si]) + `(Pi) + `(Qi[ti, y′i]) + `(Q′
i[x

′
i, y

′
i]).

Note that Pi is a parity breaking path for K and si
←−
Qix

′
i

−→
Q′

iy
′
i
←−
Qiti is a trail in K, which has

the same end vertices as Pi, so that the sum of their lengths is 1 mod 2, i.e.,

`(Qi[x′i, si]) + `(Pi) + `(Qi[ti, y′i]) + `(Q′
i[x

′
i, y

′
i]) ≡ 1 mod 2.

Therefore, `(Qi) + `(Q′
i) ≡ 1 mod 2, which implies that

`(Qi) ≡ `(Q′
i) + 1 ≡ (di + βi) + 1 ≡ di mod 2.

This completes the proof of Claim 6. 2

It follows from Claim 6 that Q1, Q2, . . . , Q` are ` vertex-disjoint paths such that Qi

joins xi with yi, and Qi has length di modulo 2 for i = 1, 2, . . . , `. So

di − `(Qi) ≡ 2bi mod 2mi, for each i = 1, 2, . . . , `, (6)

where bi is an integer with 0 ≤ bi ≤ mi− 1. Thus, for each i ∈ [1, `] with mi = 1, we have

`(Qi) ≡ di mod m′
i (7)

Since m′
i = mi for each i ≥ ` + 1, (7) is true for every i with mi = 1.

For each i with mi ≥ 2, set

Gi := G[∪mi−1
j=1 (V (Pij) ∪ V (Qij) ∪ {uimi})].

By using Lemma 3 (for i ∈ [1, `]) and Lemma 2 (for i ∈ [` + 1, k]) with Gi and Ri, we find
a path R′

i in Gi connecting ui1 and uimi such that

`(R′
i)− `(Ri) ≡

{
2bi mod 2mi if i ∈ [1, `]
di − `(Qi) mod mi if i ∈ [` + 1, k]

(8)

Let Ti be the path obtained from Qi by replacing Ri with R′
i. By (6) and (8), we have for

each i with mi > 1 that

`(Ti) ≡ `(Qi) + (`(R′
i)− `(Ri)) ≡ di mod m′

i. (9)
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For each i with mi = 1, set Ti := Qi. By (7) and (9), T1, T2, . . . , Tk are k vertex-disjoint
paths in G such that Ti joins xi with yi and Ti has length di modulo m′

i. So, T1, T2, . . . , Tk

are the desired paths. This completes the proof of Case 1 of Theorem 4.

Case 2. bi(G) ≤ 4k + 2`− 2.

In this case, we have 2k + 2` − 3 + δ(m1, . . . , m`) ≤ bi(G) ≤ 4k + 2` − 2. We will
use the technic developed by Thommassen in [25] to obtain k desired paths. Let U =
{u1, u2, . . . , ut} be a minimum odd cycle cover of G, where t ∈ [2k + 2`− 3, 4k + 2`− 2].
Then, H0 := G−U is a 39(m1+· · ·+mk)-connected bipartite graph. For i = 1, 2, . . . , t, let
Hi be the bipartite graph obtained from Hi−1 by adding ui to the side of the bipartition
of Hi−1 which has less neighbors of ui and all edges of G with ui as one endvertex and
the other endvertex on the other partite set of K. Since every vertex of U has at least
39(m1 + · · ·+mk) neighbors in H, K := Ht is a spanning subgraph of G with connectivity
at least 19(m1 + · · ·+ mk). By the definition of K, every edge of G−E(K) joins vertices
on the same side of the bipartition of K. Then,

||K|| ≥ ||H||+ t · 19(m1 + · · ·+ mk)
≥ 39/2(m1 + · · ·+ mk)(|K| − t) + t · 19(m1 + · · ·+ mk)
≥ 19(m1 + · · ·+ mk)|K|.

By Theorem 6, K is 3(m1 + · · ·+ mk)-linked.

It follows from the choice of K that every edge of G−E(K) is a parity breaking path
for K in G. If G − X − E(K) has at least ` pairwise independent edges, then by an
argument similar to that in the proof of Case 1, we can find k desired paths. So assume
that no such ` edges exist. Then, G −X has a set A of at most 2` − 2 vertices meeting
all edges in G − X − E(K). We may assume that G − X − E(K) has ` − 1 pairwise
independent edges whose set of ends in A, since otherwise A has only 2`− 4 vertices and
G− (A ∪X) is bipartite, a contradiction to bi(G) ≥ 2k + 2`− 3 + δ(m1, . . . , m`).

Furthermore, if there are any edge of G − A − {x`+1, y`+1, . . . , xk, yk} − E(K) with
only one end in X` := {x1, y1, x2, y2, . . . , x`, y`} then using such an edge and our set of
`− 1 independent edges in A we can again use the technic developed in Case 1 to find the
desired paths. So assume that no such edge exists. So G−A− (X − {x1}) is a bipartite
graph. Hence

2k + 2`− 3 + δ(m1, . . . , m`) ≤ bi(G) ≤ |A|+ |X − {x1}| ≤ 2k + 2`− 3,

which in turn shows δ(m1, . . . , m`) = 0. Therefore, min{m1, . . . , m`} = 1. Assume,
without loss of generality, m1 = 1.

If any two vertices of X` are non-adjacent or on opposite side of K, then G−A− (X−
{x, y}) is bipartite contradicting bi(G) ≥ 2k + 2` − 3 + δ(m1, . . . , m`). We then assume
that G[X`] is complete and all vertices of X` are on the same side of K. Using edge x1y1

and our set of `− 1 independent edges in A we can again find the desired paths by simply
setting T1 := x1y1, which completes the proof of Theorem 4. 2
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