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Public Key Cryptography

Diffie and Hellman (1976) proposed the concept of public key
cryptosystems with which users can communicate without sharing
any prior secret key.

One-way function: easy to evaluate, but hard to invert (on
average).

Trapdoor one-way function: easy to evaluate, but hard to
invert without knowledge of some “trapdoor”.

A public key cryptosystem consists of a family of trapdoor one-way
functions.
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Examples

Candidate one-way function: Polynomials are easy to evaluate
but NP-hard to invert, however, its average complexity is not
known.

Univariate: Given α ∈ Fq, and a sparse polynomial

f (x) =
t∑

i=1

fix
di ∈ Fq[x ]

where q is large (say q = 25000), di ’s are as big as q, and t is small
(say t = 500). Then it is easy to compute f (α), but it is
NP-complete to decide, for a given β ∈ Fq and a sparse f ∈ Fq[x ],
whether there exists α ∈ Fq such that f (α) = β.
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Examples

Candidate trapdoor one-way functions:

RSA cryptosystem encryption: f (x) = xe(modn) where n is a
product two primes and gcd(e, φ(n)) = 1.
“Trapdoor”: the factorization of n, or an integer d such that
ed ≡ 1(modφ(n)).

Discrete log based cryptosystems: G is a cyclic group
generated by α of order n. Pick a random integer
k ∈ {1, 2, . . . , n − 1} as a “trapdoor” and let β = αk be
public. The encryption function is then

f (x) = (x ⊕ βr , αr )

where r ∈ {1, 2, . . . , n − 1}is random for each x .
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Public key cryptosystems

Practical cryptosystems: RSA cryptosystem based on
integer factorization and cryptosystems based on discrete log
in finite fields and elliptic curves.

Main Problem: Quantum computers, if built, can factor
integers and solve discrete logs in polynomial time (Shor
1997).

Possible alternatives:

Lattice-based cryptography
Code-based cryptography
Hash-based cryptography
Multivariate cryptography

...

Shuhong Gao Joint with Ray Heindl New Directions in Multivariate Public Key Cryptography



Multivariate Public Key Cryptography
New Framework for MPKCs

Building a New Cryptosystem

Public Key Cryptography in a nutshell
Multivariate Public Key Cryptography
Existing Systems

Public key cryptosystems

Practical cryptosystems: RSA cryptosystem based on
integer factorization and cryptosystems based on discrete log
in finite fields and elliptic curves.

Main Problem: Quantum computers, if built, can factor
integers and solve discrete logs in polynomial time (Shor
1997).

Possible alternatives:

Lattice-based cryptography
Code-based cryptography
Hash-based cryptography
Multivariate cryptography

...

Shuhong Gao Joint with Ray Heindl New Directions in Multivariate Public Key Cryptography



Multivariate Public Key Cryptography
New Framework for MPKCs

Building a New Cryptosystem

Public Key Cryptography in a nutshell
Multivariate Public Key Cryptography
Existing Systems

Public key cryptosystems

Practical cryptosystems: RSA cryptosystem based on
integer factorization and cryptosystems based on discrete log
in finite fields and elliptic curves.

Main Problem: Quantum computers, if built, can factor
integers and solve discrete logs in polynomial time (Shor
1997).

Possible alternatives:

Lattice-based cryptography
Code-based cryptography
Hash-based cryptography
Multivariate cryptography

...

Shuhong Gao Joint with Ray Heindl New Directions in Multivariate Public Key Cryptography



Multivariate Public Key Cryptography
New Framework for MPKCs

Building a New Cryptosystem

Public Key Cryptography in a nutshell
Multivariate Public Key Cryptography
Existing Systems

Multivariate Public Key Cryptography

NP-complete problem: Given a system of quadratic polynomials
F = (f1, . . . , fm) ∈ Fq[X1, . . . ,Xn]m and a point
y = (y1, . . . , ym) ∈ Fm

q , decide whether there exists a point
x = (x1, . . . , xn) ∈ Fn

q such that

F (x) = y .

To build a multivariate cryptosystem, we hope to disguise a “nice
polynomial system” as an arbitrary quadratic polynomial system.
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MPKC: Structure

Let k = Fq be a finite field with q elements.

Public Key: F̄ : kn → km given by

F̄ (x1, . . . , xn) =

 f̄1(x1, . . . , xn)
...

f̄m(x1, . . . , xn)


T

where f̄i ∈ k[x1, . . . , xn] are quadratic.
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MPKC: Encryption/Decryption

Encryption:

(x1, . . . , xn)→ F̄ → (y1, . . . , ym)

Decryption:

(y1, . . . , ym)→ “F̄−1” → (x1, . . . , xn)
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MPKC: Public Key Construction

We build the trapdoor one-way function F̄ as

F̄ = L1 ◦ F ◦ L2,

where F is a multivariate map that can be easily inverted, and
L1, L2 are invertible affine transformations, which are secret.

Evaluation:
(x1, . . . , xn)→ F̄ → (y1, . . . , ym)

Inversion:

(y1, . . . , ym)→ L−1
1 → F−1 → L−1

2 → (x1, . . . , xn)
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MPKC: Security

Public Private
F̄ = L1 ◦ F ◦ L2

Security is dependent on the known difficulty of

Solving quadratic multivariate systems over finite fields.

Factoring multivariate maps.
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MPKC: Efficiency

Encryption: polynomial evaluation

Decryption: depends on the system

public Key: coefficients of quadratic systems
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Goal: Construct secure MPKC

Difficult problem: Invertibility, security, and efficiency are
interrelated, and a good system must satisfy all three
requirements at the same time.

Some past success, but mostly with signature schemes.
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Existing Cryptosystems

Matsumoto-Imai (1988): generalizes of RSA using monomials

Hidden Field Equations (Patarin 1996)

Oil-Vinegar (Patarin 1997)

Triangular (Fell and Diffie 1985, Shamir 1993, Moh 1999,
Yang and Chen 2004)

Other systems: Rainbow (Ding and Schmidt 2005), MFE
(Wang et al. 2006), `-IC (Ding et al. 2007)

Jintai Ding, Jason Gower, and Deiter Schmidt, Multivariate Public
Key Cryptosystems, Springer (2006).
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Triangular Systems

Central map:

F (x1, . . . , xn) =


x1

x2 + g2(x1)
...
xn−1 + gn−1(x1, x2, . . . , xn−2)
xn + gn(x1, x2, . . . , xn−2, xn−1)


T

Inversion: iteratively solve for each component.

Weakness: triangular structure (first polynomial is linear, next few
are too simple).
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Oil-Vinegar Systems (Patarin 1997)

Consider two sets of variables {x̌1, . . . , x̌v} and {x1, . . . , xo}. An
oil-vinegar polynomial has the form∑

aij x̌i x̌j +
∑

bij x̌ixj +
∑

ci x̌i +
∑

dixi + e.

Given a system of o oil-vinegar polynomials, F = (f1, . . . , fo), if we
substitute field values for x̌1, . . . , x̌v , the result is an o × o linear
system, which is linear in the oil variables x1, . . . , xo .

Signature generation: Given a document (y1, . . . , yo), choose
(x̌1, . . . , x̌v ) ∈ kv at random, and solve the resulting linear system
for x1, . . . , xo . The signature is then (x̌1, . . . , x̌v , x1, . . . , xo).
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New Framework for MPKCs

We propose a new framework for constructing central maps that
combines ideas from Triangular and Oil-Vinegar Systems.

Benefits:

Combine Triangular and Oil-Vinegar systems to build
encryption schemes.

Achieve invertibility more generally, then address the issues of
security and efficiency.

Introduce flexibility in construction.
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first oil-vinegar system
vinegar variables: x1, . . . , xn

oil variables: y11, . . . , y1n

`-th oil-vinegar system
vinegar variables: x1, . . . , xn, . . . ,
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Example: MFE Cryptosystem (Wang et al. 2006)

It is based on the following identity. Let

A(X ) = det

(
X1 X3

X4 X2

)
, A(Y ) = det

(
Y1 Y3

Y4 Y2

)
,

and (
X1 X3

X4 X2

)(
Y1 Y3

Y4 Y2

)
=

(
f1 f3
f4 f2

)
.

Taking determinants on both sides gives the identity

A(X )B(Y ) = f1f2 − f3f4.
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s.t. h1h2 + h3h4 = A(X )A(Z )

h1

h2

h3

h4

s.t. g1g2 + g3g4 = A(Y )A(Z )

g1

g2

g3

g4

s.t. f1f2 + f3f4 = A(X )A(Y )

f1
f2
f3
f4

X1

X2 + φ(X1)
X3 + φ(X1,X2)

Input: (X1,X2,X3,Y1,Y2,Y3,Z1,Z2,Z3) ∈ k9

Output: A vector in k15
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Decryption

Decryption involves two steps:

1 Restoring the triangular structure and solving for the initial
vinegar variables x1, . . . , xn.

2 Iteratively solving the oil-vinegar systems for the remaining oil
variables.
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Decryption: Step 1 - Restore triangular structure

s.t. h1h2 + h3h4 = A(X )A(Z )
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s.t. h1h2 + h3h4 = A(X )A(Z )

h1

h2

h3

h4

s.t. g1g2 + g3g4 = A(Y )A(Z )

g1

g2

g3

g4

s.t. f1f2 + f3f4 = A(X )A(Y )

f1
f2
f3
f4

X1

X2 + φ(X1)
X3 + φ(X1,X2)X1,X2,X3



Decryption: Step 2 - Solve oil-vinegar systems

s.t. h1h2 + h3h4 = A(X )A(Z )

h1

h2

h3

h4

s.t. g1g2 + g3g4 = A(Y )A(Z )

g1

g2

g3

g4
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Multivariate Public Key Cryptography
New Framework for MPKCs

Building a New Cryptosystem

New Framework for MPKCs
Example: MFE Cryptosystem
Searching for polynomial identities

Constructing Polynomial Identities

Goal: construct identities of the form

A(X )B(Y ) = f1f2 + · · ·+ fm−1fm

over the polynomial ring k[X1, . . . ,Xn,Y1, . . . ,Yn].

Toolbox:

1 Parameterization

2 Gröbner Basis methods

3 Plücker coordinates

4 Matrix Determinants

5 Grassmann coordinates

6 Graph theory
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Building a New Cryptosystem

A new polynomial Identity
Our system
Analysis
Open questions

Polynomial identity in k[X1, . . . , X8, Y1, . . . , Y8]

A(X )B(Y ) = f1f2 + f3f4 + f5f6 + f7f8 + f9f10,

where A(X ) = X1X2 + X3X4 + X5X6 + X7X8

B(Y ) = Y1Y2 + Y3Y4 + Y5Y6 + Y7Y8

f1 = X4Y1 + X8Y4 + (X1 + X4)Y5 + X5Y8

f2 = (X2 + X3)Y2 + X7Y3 + X2Y6 + X6Y7

f3 = X8Y2 + X4Y3 + X5Y6 + (X1 + X4)Y7

f4 = X7Y1 + (X2 + X3)Y4 + X6Y5 + X2Y8

f5 = X2Y1 + X6Y4 + (X2 + X3)Y5 + X7Y8

f6 = (X1 + X4)Y2 + X5Y3 + X4Y6 + X8Y7

f7 = X6Y2 + X2Y3 + X7Y6 + (X2 + X3)Y7

f8 = X5Y1 + (X1 + X4)Y4 + X8Y5 + X4Y8

f9 = Y1Y7 + Y2Y8 + Y3Y5 + Y4Y6

f10 = X1X7 + X2(X5 + X8) + X3X5 + X4(X6 + X7).
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Building a New Cryptosystem

A new polynomial Identity
Our system
Analysis
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Polynomial Identity

We introduce the following notation:

pij
xy =

∣∣∣∣ xi xj

yi yj

∣∣∣∣ = xiyj − xjyi , 1 ≤ i < j ≤ 4.

Define

|xyzw| =

∣∣∣∣∣∣∣∣
x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

x4 y4 z4 w4

∣∣∣∣∣∣∣∣ .
Then

|xyzw| = p12
xyp34

zw − p13
xyp24

zw + p14
xyp23

zw + p23
xyp14

zw − p24
xyp13

zw + p34
xyp12

zw .
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Multivariate Public Key Cryptography
New Framework for MPKCs

Building a New Cryptosystem

A new polynomial Identity
Our system
Analysis
Open questions

Polynomial Identity

0 = |xyxw|+ |xyxz|+ |xyyw|+ |xyyz|+ (1)

|zwxw|+ |zwxz|+ |zwyw|+ |zwyz| (2)

Defining

pij = pij
xw + pij

xz + pij
yw + pij

yz , 1 ≤ i < j ≤ 4, (3)

the four determinants of (1) can be regrouped as

p12
xyp34 + p13

xyp24 + p14
xyp23 + p23

xyp14 + p24
xyp13 + p34

xyp12.
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Building a New Cryptosystem

A new polynomial Identity
Our system
Analysis
Open questions

Polynomial Identity

After performing a similar grouping for (2), we get the the identity

0 = (p12
xy + p12

zw )p34 + (p13
xy + p13

zw )p24 + (p14
xy + p14

zw )p23 +

(p23
xy + p23

zw )p14 + (p24
xy + p24

zw )p13 + (p34
xy + p34

zw )p12. (4)

After a slight modification and a change of variables, (4) becomes

0 = A(X )A(Y ) + f1f2 + f3f4 + f5f6 + f7f8 + f9f10.
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Multivariate Public Key Cryptography
New Framework for MPKCs

Building a New Cryptosystem

A new polynomial Identity
Our system
Analysis
Open questions

Our system

A triangular system with 7 polynomials

A chain of 7 oil-vinegar systems, each based on
f1, f2, f3, f4, f5, f6, f7, f8with f9 and f10 attached.

Lock polynomials based on A(X ) and B(Y ).
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Multivariate Public Key Cryptography
New Framework for MPKCs

Building a New Cryptosystem

A new polynomial Identity
Our system
Analysis
Open questions

Chain of Oil-Vinegar Systems

The central map has input length 56: (X1, . . . ,X24,Y1, . . . ,Y32), and
output length 74.

X1, . . . ,X8

Y1, . . . ,Y8

Y9, . . . ,Y16

X9, . . . ,X16

X17, . . . ,X24

Y17, . . . ,Y24

Y25, . . . ,Y32

1 3

2

4

6

5

7
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A new polynomial Identity
Our system
Analysis
Open questions

Security Analysis

Gröbner basis attacks: F4 (Faugére 1999), F5 (Faugére 2002,
Barget et al 2005), XL algorithm (Courtois et al 2000), G2V (Gao,
Guan and Volny 2010).

The total number of operations in k is about

O

((
n + dreg

n

)ω)
,

where ω is the exponent in Gaussian reduction and dreg is the
degree of regularity of the ideal formed by the polynomials in the
system.
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Building a New Cryptosystem

A new polynomial Identity
Our system
Analysis
Open questions

Security Analysis

Attacks based on linear algebra:

Minrank attack (Kipnis and Shamir 1999, Goubin and
Courtois 2000). Each quadratic form is associated with a
symmetric matrix and the rank of a matrix does not change
under linear transforms. This attack explores the fact that
some polynomials in the central map may have low rank. The
complexity of this attack to our system is

qd
74
56
e8d = q16d .

Dual rank attack (Yang and Chen 2004). While minrank
succeeds when an equation has too few variables, the dual
rank attack is effective when a variable appears in too few
equations. The complexity of the attack is (56d)3q6d .
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New Framework for MPKCs

Building a New Cryptosystem

A new polynomial Identity
Our system
Analysis
Open questions

Security Analysis

Attacks based on linear algebra:

Separation of oil and vinegar variables attack (Kipnis and
Shamir 1998, Kipnis, Patarin and Goubin 1999). The goal of
this attack is to find the transformed oil space, so separate
the oil and vinegar variables. The complexity is 204q15d .

Linearization equations attack. (Patarin 1996, Ding et al
2007). Computations using Magma verify that there are no
first order linearization equations. Ding et al broke MFE using
second order linearization equations which comes from the
associativity of determinant. Our system avoids determinants,
so their method does not apply. But there still might be some
other second order linearization equations!
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Security Analysis

Claimed Input Output Complexity Key Size [kBytes]
Security [bits] [bits] F5 Rank/UOV Public Private

2113 896 1184 2114 2113 245 18

2212 1792 2368 2213 2212 1907 70

2114 1792 2368 2114 2209 490 36

Shuhong Gao Joint with Ray Heindl New Directions in Multivariate Public Key Cryptography
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Building a New Cryptosystem

A new polynomial Identity
Our system
Analysis
Open questions

Efficiency

System
Input Output

Encryption
Decryption

[bits] [bits] Central Map Total

MFE-1 768 960 52ms 2ms 2.7ms

Our System 896 1184 94ms 1.4ms 2.3ms
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Open Questions

Find “nontrivial” solutions to the following equation:

AB = CD + EF

where A,B,C ,D,E ,F ∈ F2[x1, . . . , xn, y1, . . . , yn] have degree
two.
MFE is based on solution with n = 4. Need solutions for
5 ≤ n ≤ 16.

Can we characterize all quadratic solutions to the equations

A(X )A(Y ) = CD + EF

and
A(X )A(Y ) = f1f2 + f3f4 + f5f6 + f7f8 + f9f10?
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Open Questions

Using the tools from algebraic geometry and combinatorics,
what other polynomial identities may be constructed to
implement cryptosystems in the proposed framework?

How to efficiently solve given systems of quadratic equations?
G, Yinhua Guan, Frank Volny IV and Mingsheng Wang,
A new algorithm for computing Grobner bases, which is both
simpler and faster than F5.

Thank you!
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