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SUMMARY

An approximation method is derived for the computation of the acoustic �eld between a series of
parallel plates, subject to a time periodic incident �eld. The method is based on the Wiener–Hopf
method of factorization, with computations involving orthogonal bases of functions that are analytic in
the complex half-plane. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this article we combine the classical Wiener–Hopf technique with an orthogonal expansion
for holomorphic functions to compute an approximation to the solution of the acoustic �eld
between a series of parallel plates of varying heights and spacings. This problem has received
considerable attention throughout the years. An elegant solution for two, semi-in�nite plates of
equal height, was obtained by Jones in Reference [1], (see also Reference [2]). In Reference
[3], Jones presented the solution for three uniformly spaced, semi-in�nite soft plates, of equal
heights. The solution for two semi-in�nite plates with di�erent heights was given by Abrahams
and Wickham in Reference [4]. They extended their work in Reference [5] to model scattering
of water waves from opposing vertical barriers. In Reference [6] Alkumru considered the case
of electromagnetic di�raction from three uniformly spaced, semi-in�nite thick plates, of equal
heights where the plates have non-zero thickness.
The di�culty in extending the Wiener–Hopf technique to the general N -plate setting has

been in obtaining a suitable product factorization of the N ×N matrix arising in the method.
In Reference [7] Meister et al. presented an operator splitting approach to construct a suitable
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20 J. R. BRANNAN ET AL.

Figure 1. Plane waves incident on a set of parallel plates.

factorization of the associated Fourier symbol, and showed that the Wiener–Hopf system was
invertible provided the plates were su�ciently separated.
Our work in this paper extends the approach presented in Reference [1] to the case of

N -plates. For our general setting an approximation method is required, as it is still an open
research question how to factor the operators associated with the determining equations for
the solution into two pieces: one holomorphic in an upper half plane, and the other holomor-
phic in a lower half plane, with algebraic behaviour at in�nity. Using an orthogonal basis
for holomorphic functions we present a numerical approximation algorithm for the N -plate
problem. Results from the numerical scheme are demonstrated for a 3-plate example.
The multi-plate di�raction problem has recently been considered as a model for predicting

radiowave propogation in urban microcell environments [8–12]. (In the case the magnetic (or
electric) �eld of the incoming signal is orientated perpendicular to the direction of propogation
of the plane wave, the problem may be recast as the scalar Helmholtz equation.) Several
di�erent approaches have been applied to this problem: empirical, semi-empirical, theoretical,
ray-tracing and those employing the uniform theory of di�raction [9–11,13].
This paper is organized as follows. In Section 2 we derive the approximating system of

equations for the coupled �eld. The approximation approach to solving these equations is then
presented in Section 3. An example demonstrating the technique is given in Section 4.

2. MATHEMATICAL MODEL

The problem investigated in this paper is that of a plane wave �eld impinging upon a system
of N semi-in�nite plates, each parallel to the xz-plane and arranged one behind the other
along the positive y-axis (Figure 1). The height of the edges of the plates above the xy-plane
may vary from plate to plate. We assume that the vector normal to the wavefronts of the
incident �eld is parallel to the yz-plane and makes an angle � with the positive y-axis.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:19–34



WIENER–HOPF APPROXIMATION TECHNIQUE 21

Assuming an ej!t time dependence, the incident �eld is speci�ed by

�inc(y; z)= e− jk(y cos �+z sin �)

We partition the yz-plane into N+1 subdomains de�ned by

D0 = {(y; z) :−∞¡y¡y1;−∞¡z¡∞}
Dn = {(y; z) :yn¡y¡yn+1;−∞¡z¡∞}; n=1; : : : ; N − 1

and

DN = {(y; z) :yN¡y¡∞;−∞¡z¡∞}
If we let  n(y; z) denote the total wave �eld in domain Dn, then  n(y; z) must satisfy the
two-dimensional Helmholtz equation,

@2 
@y2

+
@2 
@z2

+ k 2 =0; (y; z)∈Dn (1)

for each n=0; : : : ; N . In addition, we impose the following interface conditions:

 n−1(yn − 0; z) =  n(yn + 0; z); hn¡z¡∞; n=1; : : : ; N (2)

@ n−1(yn − 0; z)
@y

=
@ n(yn + 0; z)

@y
; hn¡z¡∞; n=1; : : : ; N (3)

@ n−1(yn − 0; z)
@y

=0; −∞¡z¡hn; n=1; : : : ; N (4)

and

@ n(yn + 0; z)
@y

=0; −∞¡z¡hn; n=1; : : : ; N (5)

Conditions (2) and (3) arise from the requirement that the wave�eld and its normal derivative
be continuous along the interfaces between regions above the plates. Conditions (4) and (5)
constitute a hard boundary condition on both sides of each plate. Note that together conditions
(3), (4), and (5) imply that

@ n−1(yn − 0; z)
@y

=
@ n(yn + 0; z)

@y
; −∞¡z¡∞; n=1; : : : ; N (6)

In addition to the interface conditions we impose a constraint that disallows waves propagating
in from in�nity assuming an ej!t time dependence, that is, a radiation condition. For the index
of refraction we use k= k1 − jk2 with 0¡k2�1, and requiring solutions to be bounded as y
tends to plus in�nity. Calculations are simpli�ed if we represent the total wave �eld in each
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22 J. R. BRANNAN ET AL.

domain as a sum of the incident �eld and a residual �eld �n(y; z),

 n(y; z)=�n(y; z) + �inc(y; z); n=0; : : : ; N (7)

Denote the Fourier transform of �n(y; z) with respect to z by �n(y; �),

�n(y; �)=
∫ ∞

−∞
�n(y; z)e− j�z dz (8)

It follows from (1) and the radiation conditions that

�0(y; �) = L1(�)e
√

�2−k 2y (9)

�n(y; �) = Ln+1(�)e
√

�2−k 2y + Rn(�)e−
√

�2−k 2y; n=1; : : : ; N − 1 (10)

and

�N (y; �)=RN (�)e−
√

�2−k 2y (11)

The branch cut for
√
�− k is taken to be {� : �= k − j�; 0¡�¡∞} and the branch cut for√

�+ k is taken to be {� : �= k + j�; 0¡�¡∞}. We also specify that Re(
√
�2 − k 2)¿0 if

|Re(�)|¿Re(k).
Fourier transforming each of the interface conditions (6) with respect to z and substituting

(9)–(11) into the resulting equations yields the following relationships between the left and
right propagating mode amplitude functions,

L1(�)e�y1 = L2(�)e�y1 − R1(�)e−�y1 (12)

Ln+1(�)e�yn+1 − Rn(�)e−�yn+1 = Ln+2(�)e�yn+1 − Rn+1(�)e−�yn+1 ; n=1; : : : ; N − 2 (13)

LN (�)e�yN − RN−1(�)e−�yN =−RN (�)e−�yN (14)

where � :=
√
�2 − k 2.

The total wave �eld in each domain Dn expressed in terms of Fourier integral representations
of the �n(y; z) is

 0(y; z) =
1
2�

∫ ∞

−∞
L1(�)e�ye j�z d�+ �inc(y; z) (15)

 n(y; z) =
1
2�

∫ ∞

−∞
[Ln+1(�)e�y + Rn(�)e−�y]e j�z d�+ �inc(y; z); n=1; : : : ; N − 1 (16)

 N (y; z) =
1
2�

∫ ∞

−∞
RN (�)e−�ye j�z d�+ �inc(y; z) (17)
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WIENER–HOPF APPROXIMATION TECHNIQUE 23

If we now apply interface conditions (2) to (15)–(17) and use the relationships (12)–(14)
we �nd that

1
2�

∫ ∞

−∞
R1(�)e−�y1e j�h1e j�z d�=0; z¿0 (18)

1
2�

∫ ∞

−∞
[Ln+1(�)− Ln(�)]e�yne j�hn e j�z d�=0; z¿0; n=1; : : : ; N − 1 (19)

1
2�

∫ ∞

−∞
[Rn+1(�)− Rn(�)]e−�yn+1e j�hn+1e j�z d�=0; z¿0; n=1; : : : ; N − 1 (20)

and

1
2�

∫ ∞

−∞
LN (�)e�yN e j�hN e j�z d�=0; z¿0 (21)

Any argument similar to that of Reference [2, p. 101], see Appendix B, shows that

R1(�)e−�y1e j�h1

[Ln+1(�)− Ln(�)]e�yne j�hn ; n=1; : : : ; N − 1

[Rn+1(�)− Rn(�)]e−�yn+1e j�hn+1 ; n=1; : : : ; N − 1

and

LN (�)e�yN e j�hN

are analytic functions of � for Im(�)¿k2 sin � and are O(|�|−1) as |�|→∞. We therefore set

E (+)1 (�) := R1(�)e−�y1e j�h1 = (L2(�)− L1(�))e�y1e j�h1 ; (using 12) (22)

E (+)n+1(�) := [Rn+1(�)− Rn(�)]e−�yn+1e j�hn+1

= [Ln+2(�)− Ln+1(�)]e�yn+1e j�hn+1 ; n=1; : : : ; N − 2 (23)

E (+)N (�) := [Rn+1(�)− Rn(�)]e−�yN e j�hN

= LN (�)e�yN e j�hN (24)

where the superscript plus signs indicate that the functions are analytic in the upper half space
and tend to zero as |�|→∞.
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24 J. R. BRANNAN ET AL.

The interface conditions (4)–(5) applied to (15)–(17) yield the coupled system of 2N
integral equations

1
2�

∫ ∞

−∞

√
�2 − k 2L1(�)e�y1e j�h1e j�z d� = jk cos �e−jk(y1 cos �+(z+h1) sin �); z¡0 (25)

1
2�

∫ ∞

−∞

√
�2 − k 2[Ln+1(�)e�yn − Rn(�)e−�yn]e j�hne j�z d�

= jk cos �e−jk(yn cos �+(z+hn) sin �); z¡0; n=1; : : : ; N − 1 (26)

1
2�

∫ ∞

−∞

√
�2 − k 2[Ln+1(�)e�yn+1 − Rn(�)e−�yn+1]e j�hn+1e j�z d�

= jk cos �e−jk(yn+1 cos �+(z+hn+1) sin �); z¡0; n=1; : : : ; N − 1 (27)

and

− 1
2�

∫ ∞

−∞

√
�2 − k 2RN (�)e−�yN e j�hN e j�z d�

= jk cos �e−jk(yN cos �+(z+hN ) sin �); z¡0 (28)

Note, in view of (12)–(14), Equations (26), (28), are equivalent to (25), (27).
De�ne

g1(z)=



1
2�

∫ ∞

−∞

√
�2 − k 2L1(�)e�y1e j�h1 e j�z d� z¿0

0 z¡0
(29)

gn+1(z)=



1
2�

∫ ∞

−∞

√
�2 − k 2[Ln+1(�)e�yn+1 − Rn(�)e−�yn+1]e j�hn+1e j�z d� z¿0

0 z¡0
(30)

for n=1; : : : ; N − 1. We now Fourier transform (25), (27) to obtain the system of equations

√
�2 − k 2L1(�)e�y1e j�h1 =− k cos �

�+ k sin �
e−jk(y1 cos �+h1 sin �) +G (−)

1 (�) (31)

√
�2 − k 2[Ln+1(�)e�yn+1 − Rn(�)e−�yn+1]e j�hn+1

=− k cos �
�+ k sin �

e−jk(yn+1 cos �+hn+1 sin �) +G (−)
n+1(�); n=1; : : : ; N − 1 (32)
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where the functions G (−)
n (�), the Fourier transforms of gn(z), for n=1; : : : ; N , are holomorphic

in the lower half plane Im(�)¡k2, see Appendix C, and are O(|�|−1=2) as |�|→−∞.
In order for the transforms (31)–(32) to exist it is necessary that Im(�)¿k2 sin �. Con-

sequently, inversion contours for (31)–(32) must pass below the branch point at �=−k and
above the branch point at �= k and the pole at �=−k sin �.
Introduce the matrix notation R(�)= [R1(�); : : : ; RN (�)]T;L(�)= [L1(�); : : : ; LN (�)]T; an(�)

= e�yn ,

A(�) =



a1(�) 0 · · · 0
a1(�) a2(�) · · · 0
...

...
. . .

...
a1(�) a2(�) · · · aN (�)


 (33)

B(�) =




a−11 (�) a−12 (�) · · · a−1N (�)

0 a−12 (�) · · · a−1N (�)
...

...
. . .

...

0 0 · · · a−1N (�)


 (34)

and

P(�)=




e j�h1 0 · · · 0

0 ej�h2 · · · 0
...

...
. . .

...

0 0 · · · e j�hN


 (35)

Note that (12)–(14) may be expressed in matrix form as

B−1(�)L(�) =−A−1(�)R(�)

⇒L(�) =−B(�)A−1(�)R(�) (36)

and from (22)–(24)

E(+)(�)=P(�)A−1(�)R(�) (37)

Equations (31)–(32) can be rewritten as

−
√

�2 − k2[I+ P(�)(C(�) +CT(�))P−1(�)]E(+)(�)= − k cos �
�+ k sin �

b+G(−)(�) (38)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:19–34
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where

E(+)(�)=



E(+)1

...

E(+)N


 ; G(−)(�)=



G(−)
1

...

G(−)
N


 ; b=



e−jk(y1 cos �+h1 sin �)

...

e−jk(yN cos �+hN sin �)


 (39)

and

C(�)=




0 a1(�)a−12 (�) a1(�)a−13 (�) : : : a1(�)a−1N (�)

0 0 a2(�)a−13 (�) : : : a2(�)a−1N (�)

...
...

...
. . .

...

0 0 0 : : : aN−1(�)a−1N (�)

0 0 0 : : : 0




(40)

If we now de�ne

Ĝ(−)(�)=
1√

�+ k
G(−)(�) (41)

then Equation (38) may be written as

√
�− k[I+ P(�)(C(�) +CT(�))P−1(�)]E(+)(�)=

k cos �
(�+ k sin �)

√
�+ k

b− Ĝ(−)(�) (42)

Splitting the �rst term on the right hand side of (42) into a sum of two functions, one
holomorphic in the upper half plane and the other holomorphic in the lower half plane, we
rewrite (42) as

√
�− k[I+ P(�)(C(�) +CT(�))P−1(�)]E(+)(�)

=
cos �

�+ k sin �

√
k√

1− sin � b+H
(−)(�) (43)

where

H(−)(�)=
k cos �

�+ k sin �

[
1√

�+ k
− 1√

k(1− sin �)

]
b− Ĝ(−)(�) (44)

In the classical Wiener–Hopf approach one would now factor the term in front of E(+) into
a product of two functions, one holomorphic in the upper half plane and the other holomor-
phic in the lower half plane, with algebraic behaviour at in�nity. However, for the general
setting considered in this paper such a decomposition is not known. We therefore proceed by
computing a numerical approximation to the solution of (43).
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3. NUMERICAL APPROXIMATION

3.1. Functions holomorphic in a half-plane

Let �¿0 and consider the system of functions

!m(�)=
√

�
�
(�− j�)m−1

(�+ j�)m
; !−m(�)=

√
�
�
(�+ j�)m−1

(�− j�)m
; m=1; 2; 3; : : : (45)

Restricting the domain of the functions to the real axis, the system (45) is a complete or-
thonormal system for Lp(−∞;∞), 1¡p¡∞ [14], equipped with the inner product

〈f; g〉=
∫ ∞

−∞
f(�) �g(�) d�

Furthermore, functions E(�) which are holomorphic in the upper half plane with boundary
values in Lp(−∞;∞) have a unique representation

E(�)=
∞∑
m=1

em!m(�)

where the Fourier coe�cients en are obtained from the boundary values of E on the real axis,

em=
∫ ∞

−∞
E(�) �!m(�) d�; m=1; 2; 3; : : :

Similarly, functions F(�) holomorphic in the lower half plane with boundary values in
Lp(−∞;∞) have a unique representation

F(�)=
∞∑
m=1

f−m!−m(�)

Note that from (22)–(24), and (B7)–(B9), along the real axes
√
�− kE+n (�)∈Lp(−∞;∞),

for p¿2. Illustrated in Figures 2 and 3, are the real and imaginary parts of !2(�) and !7(�),
respectively.

3.2. Projection onto functions analytic in a half-plane

With k expressed in complex polar coordinates as k=	k!k where 	k = |k| and !k =ej arg(k),
and using the scalings �=	k�, Ẽ(+)(�)=	kE(+)(	k�), P̃(�)=P(	k�), C̃(�)=C(	k�), and
H̃(−)(�)=

√
	kH(−)(	k�), then (43) may be rewritten as

√
�− wk[I+ P̃(�)(C̃(�) + C̃T(�))P̃−1(�)]Ẽ(+)(�)

=
√
wk cos �

(�+ wk sin �)
√
1− sin � b+ H̃

(−)(�) (46)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:19–34
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Figure 2. Real and imaginary parts of !2(�).

Figure 3. Real and imaginary parts of !7(�).

We seek to solve for the approximation

√
�− wkẼ(+)(�)=

M∑
m=1

em!m(�) (47)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:19–34
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Figure 4. Con�guration of plates and incoming wave.

Substituting (47) into (46), followed by taking inner products on both sides with !̃
(�),

=1; 2; 3; : : : ; M , yields the �nite-dimensional system

e
 +
M∑

m=1

S
mem=
√
wk cos �√
1− sin � s
b; 
=1; : : : ; M (48)

where

S
m=Q
m + R
m=
∫ ∞

−∞
P̃(�)[C̃(�) + C̃T(�)]P̃−1(�)!m(�) �!
(�) d� (49)

and

s
=
∫ ∞

−∞

�!
(�)
(�+ wk sin �)

d�

Solving (48) for e
, 
=1; : : : ; M , we then use (47), (37), (36), (9)–(11), (7), to approximate
the total acoustic �eld.

4. NUMERICAL ILLUSTRATION OF THE METHOD

In this section we present an example illustrating the method presented above. We consider the
case of three parallel plates located at y1 = 0, y2 = 1, and y3 = 2, with heights h1 = 6, h2 = 5,
and h3 = 7, respectively (see Figure 4). The values for k and � used were k=20− j0:05 and
�=−�=6. Presented in Figures 5–9 is | n(y; z)|=|�inc(y; z)|, plotted over a region containing
the three plates, and also for each of the regions between and outside the plates.
Note that the plot in Figure 6 is consistent with the sum of the incoming wave plus the

re�ected wave with the maximum and minimum values occurring where expected. The plot
in Figure 9 is also consistent with what is expected for a signal in a ‘shadow’ region.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:19–34
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Figure 5. | n(y; z)|=|�inc(y; z)| over the entire region.

Figure 6. | n(y; z)|=|�inc(y; z)| in front of plate 1.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:19–34
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Figure 7. | n(y; z)|=|�inc(y; z)| between plates 1 and 2.

Figure 8. | n(y; z)|=|�inc(y; z)| between plates 2 and 3.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:19–34
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Figure 9. | n(y; z)|=|�inc(y; z)| behind plate 3.

APPENDIX A: BEHAVIOUR OF �n(y; z)

Following the discussion of Noble [2, p. 100], we have the following behaviour for
�n(y; z):

lim
r→0+

�n(yi; hi + r)=O(1); lim
r→0+

@�n

@y
(yi; hi + r)=O(r−1=2);

for n=0; : : : ; N; and i= n; n+ 1 (A1)

For any �xed y;−∞¡y¡∞,
|�|¡C1e−k2z as z→∞; and |�|¡C2e−k2 sin � z as z→−∞ (A2)

APPENDIX B: BEHAVIOUR OF (Ln+1 − Ln)e
√

�2−k2ynej�hn AND
(Rn − Rn−1)e−

√
�2−k2ynej�hn

In view of �n(y; �) de�ned by (8), we introduce the following notation:

�+n (yi) :=�+n (yi; �)=
∫ ∞

hi
�n(yn; z)e−j�z dz

= e−j�hi
∫ ∞

0
�n(yn; z + hi)e−j�z dz; i= n; n+ 1 (B1)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:19–34
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�−
n (yi) :=�−

n (yi; �)=
∫ hi

−∞
�n(yn; z)e−j�z dz

= e−j�hi
∫ 0

∞
�n(yn; z + hi)e−j�z dz; i= n; n+ 1 (B2)

From (A2) it follows that �+n (yi) is analytic for Re(�)¡k2, and �−
n (yi) is analytic for

Re(�)¿k2 sin �.
In addition, from the Abelian theorems, [2, p. 36], we have that

�+n (yi)=O(|�|−1); �−
n (yi)=O(|�|−1) as |�|→∞ (B3)

Comparing (8)–(11) with (B1), (B2) we have:

�+0 (y1) + �
−
0 (y1) = L1(�)e

√
�2−k2y1

�+1 (y1) + �
−
1 (y1) = L2(�)e

√
�2−k2y1 + R1(�)e−

√
�2−k2y1

(B4)

�+n−1(yn) + �−
n−1(yn) = Ln(�)e

√
�2−k2yn + Rn−1(�)e−

√
�2−k2yn

�+n (yn) + �−
n (yn) = Ln+1(�)e

√
�2−k2yn + Rn(�)e−

√
�2−k2yn


 n=2; : : : ; N − 1 (B5)

�+N−1(yN ) + �−
N−1(yN ) = LN (�)e

√
�2−k2yN + RN−1(�)e−

√
�2−k2yN

�+N (yN ) + �−
N (yN ) = RN (�)e−

√
�2−k2yN

(B6)

Using the fact that �n−1(yn; z)=�n(yn; z) for z¿hn, n=1; : : : ; N , we have �+n−1(yn)=�+n (yn).
Hence, subtracting the equations in (B4), (B5), and (B6) yields

�−
1 (y1)−�−

0 (y1) = (L2(�)− L1(�))e
√

�2−k2y1 + R1(�)e−
√

�2−k2y1

�−
n (yn)−�−

n−1(yn) = (Ln+1(�)− Ln(�))e
√

�2−k2yn + (Rn(�)− Rn−1(�))e−
√

�2−k2yn

�−
N (yN )−�−

N−1(yN ) =−LN (�)e
√

�2−k2yN + (RN (�)− RN−1(�))e−
√

�2−k2yN

Next, using (12)–(14), implies

�−
1 (y1)−�−

0 (y1) = 2(L2(�)− L1(�))e
√

�2−k2y1

= 2R1(�)e−
√

�2−k2y1 (B7)

�−
n (yn)−�−

n−1(yn) = 2(Ln+1(�)− Ln(�))e
√

�2−k2yn

=2(Rn(�)− Rn−1(�))e−
√

�2−k2yn (B8)
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�−
N (yN )−�−

N−1(yN ) =−2LN (�)e
√

�2−k2yN

=2(RN (�)− RN−1(�))e−
√

�2−k2yN (B9)

Thus, in view of the behaviour of �−
n (yi) described above, we have that the function on the

RHS of (B7)–(B9), are all analytic for Re(�)¿k2 sin �, and are O(|�|−1) as |�|→∞.

APPENDIX C: BEHAVIOUR OF G−
n (�)

We discuss the case of G−
n (�). Below F−1 denotes the inverse Fourier transform, and ′

di�erentiation with respect to y.
From (29), (30) observe that

gn(z)=F−1(�+
′

n (yn))=

{
@�n(yn; z)

@y ; z¿hn

0; z¡hn

(C1)

In view of the behaviour of @�n(yn; z)=@y, (A1), and the Abelian theorems, [2, p. 36], we
have that G−

n (�) is analytic for Re(�)¡k2 and has O(|�|−1=2) behaviour as |�|→∞.
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