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Abstract. In this article we consider the numerical approximation to the time dependent vis-
coelasticity equations with an Oldroyd B constitutive equation. The approximation is stabilized by
using a SUPG approximation for the constitutive equation. We analyse both the semi-discrete and
fully discrete numerical approximations. For both discretizations we prove the existence of, and
derive a priori error estimates for, the numerical approximations.
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1 Introduction

Accurate numerical simulations of time dependent viscoelastic flows are important to the under-
standing of many phenomena in non-Newtonian fluid mechanics, particularly those associated with
flow instabilities. Aside from [3], previous numerical analysis in this area has been for steady state
flows.

In the case of Newtonian fluid flow the assumption that the extra stress tensor is proportional to
the deformation tensor allows the stress to be eliminated from the modeling equations, giving the
Navier—Stokes equations. In viscoelasticity, assuming an Oldroyd B type fluid, the stress is de-
fined by a (hyperbolic) differential constitutive equation. Very different from computational fluid
dynamics simulations, in viscoelasticity because of a “slow flow” assumption, the non-linearity in
the momentum equation is often neglected. The difficulty in performing accurate numerical com-
putations arises from the hyperbolic character of the constitutive equation, which does not contain
a dissipative (stabilizing) term for the stress. Care must be used in discretizing the constitutive
equation to avoid the introduction of spurious oscillations into the approximation.

The first error analysis for the steady-state finite element approximation of viscoelastic fluid was
presented by Baranger and Sandri [2]. In [2] a discontinuous finite element formulation was used
for the discretization of the constitutive equation, with the approximation for the stress being
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discontinuous. Motivated by implementation consideration, Najib and Sandri in [12] modified the
discretization in [2] to obtain a decoupled system of two equations, showed the algorithm was
convergent, and derived a priori error estimates. In [14], Sandri presented an analysis of a finite
element approximation to this problem wherein the constitutive equation was discretized using a
Streamline Upwind Petrov Galerkin (SUPG) method. For the constitutive equation discretized
using the method of characteristics, Baranger and Machmoum in [1] analysed this approach and
gave error estimates for the approximations.

For the analysis of the time dependent problem, Baranger and Wardi [3] studied a DG approximation
to inertialess flow in IR?, using similar techniques as used for the steady state problem. With
the Hood-Taylor finite element (FE) pair used to approximate the velocity and pressure, and a
discontinuous linear approximation for the stress they showed, under the assumption At < C1h3/2,

that the discrete H' and L? errors for the velocity and stress, respectively, were bounded by C'(At +
h3/2).

In this paper we analyse the SUPG approximation to the time dependent equations in IR?, d= 2,3.
For the fully discrete analysis we extend the approach used in [11] for compressible Navier-Stokes
to non-Newtonian flow. For v denoting the SUPG coefficient, and assuming Hood-Taylor FE pair
approximation for the velocity, pressure, and a continuous FE approximation for the viscoelastic
stress, under the assumption At, v < C1h%?2, we obtain that the discrete H' and L? errors for the
velocity and stress, respectively, are bounded by C(At + v + h?).

This paper is organized as follows. A description of the modeling equations is presented in section
2. Section 3 contains a description of the mathematical notation, and several lemmas used in the
analysis. The semi-discrete and fully discrete approximations are then presented and analysed in
sections 4 and 5, respectively.

2 The Oldroyd B Model and the Approximating System

In this section we describe the modeling equations for viscoelastic fluid flow (see also [2]).

2.1 The Problem

Consider a fluid flowing in a bounded, connected domain © € R?. The boundary of Q, 99, is
assumed to be Lipschitzian. The vector n represents the outward unit normal to 9€2. The velocity
vector is denoted by u, pressure by p, total stress by T, and extra stress by 7. For ease of notation,
we use the convention of summation on repeated indices and denote differientation with a comma.

For example, % is written u ;. Then for a tensor 7 and a vector w, V - 7 denotes 7;; ;, and w - V
3

denotes the operator wia%i. The deformation tensor, D(u), and the vorticity tensor, W(u), are
given by

— 1 T _ 1 T
D(w) =  (Vut(Vo)'), W) = ;(Vu-(Vu)').
The Oldroyd model can be described using an objective derivative [2], denoted by do /0t, where

50_ do

% 1,1
5 875—i—u Vo + gq(o,Vu), a € [-1,1]



and
ga(o,Vu) = oW (u) — W(u)o — a(D(u)o + ocD(u))

_ 1! ; ¢ (aVu + (Vu)Ta) ! ; e ((Vu)a + J(Vu)T> :

Oldroyd’s model for stress employs a decomposition of the extra stress into two parts: a Newtonian
part and a viscoelastic part. So 7 = 7n + 7. The Newtonian part is given by 7y = 2(1 — o) D(u).
The (1 — «) represents that part of the total viscosity which is considered Newtonian. Hence
a € (0,1) represents the proportion of the total viscosity that is considered to be viscoelastic in
nature. For example, if a polymer is immersed within a Newtonian carrier fluid, « is related to the
percentage of polymer in the mix. The constitutive law is [2]

v+ Aa(;tv —2aD(u) =0, (2.1)

where A is the Weissenberg number, which is a dimensionless constant defined as the product of the
relaxation time and a characteristic strain rate [4]. For notational simplicity, the subscript, V, is
dropped, and below 7 will be used to denote the viscoelastic component of the extra stress.
The momentum balance for the fluid is given by
d

Re (Cl‘:) — _Up+V-(2(1—a)D(u)+7) + £, (2.2)
where Re is the Reynolds number, f the body forces acting on the fluid, and du/dt is the material
derivative. Recall that

Re = %, L = characteristic length scale,
V' = characteristic velocity scale,
p = fluid density,

w1 = fluid viscosity.
In addition to (2.1) and (2.2) we also have the incompressibility condition:
V:u = 0 in Q.

To fully specify the problem, appropriate boundary conditions must also be given. The simplest
such condition is the homogeneous Dirichlet condition for velocity. In this case, there is no inflow
boundary, and, thus, no boundary condition is required for stress. Summarizing, the modeling
equations are:

Re(%?—l—u-Vu)+Vp—2(1—a)V-D(u)—V-T —f  mQ (2.3)
T+ A (?}Z +u- VT + ga(r, Vu)) —2aD(u) = 0 in &2, (2.4)

Vou = 0 in Q, (2.5)

u = 0 on 02, (2.6)

u(0,x) = wup(x) inQ, (2.7)

7(0,x) = 7o(x) in . (2.8)

In [8], Guillope and Saut proved the following for the “slow-flow” model of (2.3)-(2.8) (i.e. u-Vu
term in (2.3) is ignored):



1. local existence, in time, of a unique, regular solution, and
2. under a small data assumption on f, f’, ug, 79, the global existence (in time) of a unique solution

for u and 7.

In contrast to the Navier—Stokes equations, well-posedness for general models in viscoelasticity is
still not well understood. Results which are known fall into one of three types [13]:

1. for inital value problems, solutions have been shown to exist locally in time,

2. global existence (in time) of solutions if the initial conditions are small perturbations of the
rest state, and

3. for steady-state problems, existence of solutions which are small perturbations of the analagous
Newtonian case.

2.2 The Variational Formulation

In this section, we develop the variational formulation of (2.3)-(2.6). The following notation will

be used. The L?*(2) norm and inner product will be denoted by ||| and (-, ). Likewise, the LP(Q)

norms and the Sobolev W[i“ (2) norms are denoted by |||, and |||y, respectively. For the semi-
p

norm in Wy (Q) we use |- |W5. HP* is used to represent the Sobelev space W&, and |||, denotes the

norm in H*. The following function spaces are used in the analysis:
Velocity Space : X := Hy(Q) := {u ceH Q) :u=0 on 89} )
Stress Space : S := {T = (Tij) : Tij = Tji; Tij € L2(Q); 1<, < 3}
ﬂ{T = (1) :u-Vr € L*(Q),Vu e X},
Pressure Space : @ := L3(Q) = {¢ € L*(Q) : /Qq dx = 0},

Divergence — free Space : Z:={ve X: / q(V-v)der=0,VqeQ}
Q

The variational formulation of (2.3)-(2.6) proceeds in the usual manner. Taking the inner product
of (2.3), (2.4), and (2.5) with a velocity test function, a stress test function, and a pressure test
function respectively, we obtain

Re (g;‘ +u- Vu,v) (Vv +2(1-a)DW) +7.DKV) = (£v), YveX, (29)

0
(7‘ + A (82 +u- V7 + goT, Vu)) - 204D(u),¢}> = 0, Vi elS, (2.10)
(V-u,q) = 0, VqgeQ. (2.11)
The space Z is the space of weakly divergence free functions. Note that the condition

(V-u,q)=0, Vge @, ue X,



is equivalent in a “distributional” sense to
(u,Vqg) =0, Vge @, ue X, (2.12)

where in (2.12), (-,-) denotes the duality pairing between H ! and H{ functions. In addition, note
that the velocity and pressure spaces, X and @), satisfy the inf-sup condition

inf sup (LYY

> 3> 0. (2.13)
7€Q vex |lq|| HVH1

Since the inf-sup condition (2.13) holds, an equivalent variational formulation to (2.9)-(2.11) is:
Find (u,7):[0,T] — X x S such that

Re (?;: +u-Vu, V) + 21 —-a)D(u)+71,D(v)) = (f,v), VveELZ, (2.14)
<T A (gz Fu-Vr 4 galr w)) _ 2aD(u),¢) — 0, Vges (2.15)

Before discussion the numerical approximation of (2.14),(2.15), we summarize the mathematical
notation and interpolation properties used in the analysis.

3 Mathematical Notation

In this section the mathematical framework and approximation properties are summarized.

Let Q C ]Rd(ci = 2,3) be a polygonal domain and let T} be a triangulation of 2 made of triangles
(in IR?) or tetrahedrals (in IR®). Thus, the computational domain is defined by

Q=JK; KeT,.
We assume that there exist constants ci, cy such that
cah < hg < copk

where h is the diameter of triangle (tetrahedral) K, px is the diameter of the greatest ball (sphere)
included in K, and h = maxger, hix. Let Pi(A) denote the space of polynomials on A of degree no
greater than k. Then we define the finite element spaces as follows.

X; = {VEXHC(Q)J:V‘KGPk(K), VKGTh}a
i = {oesnc@™: ok € Py(K), VK € T,.},
Qn = {4€QNC(Q):qlx € Py(K), VK € T},

Zyp = {veXyp:(q,Vv)=0, Vg€ Qn},

where C (Q)d’ denotes a vector valued function with d components continuous on . Analogous to
the continuous spaces, we assume that X; and @, satisfy the discrete inf-sup condition

inf sup LV V) s g (3.1)

9€Qn veX,, gl HVH1
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We summarize several properties of finite element spaces and Sobolev’s spaces which we will use
in our subsequent analysis. For (u,p) € H1(Q)4 x HI1(Q) we have (see [7]) that there exists
(U, P) € Z, x Qp such that

||u _uH S Clhk+1|u|W2k+1 ) (32)
o —Ullyy < Clhk|u|w2k+1 ) (3.3)
lp =Pl < Crh®™plyarr - (3.4)

Let 7 € S}, be a P; continuous interpolant of 7. For 7 € HmH(Q)‘iXd we have that

I =TI + hlr = Thy

IN

Crh™ il (3.5)

N

I7 =Tl + hlr =Ty, Crh™ =7y (3.6)

From [5], we have the following results.

Lemma 1 : Let {Tp}, 0 < h < 1, denote a quasi-uniform family of subdivisions of a polyhedral

domain Q C RY. Let (K, P,N) be a reference finite element such that P C Wé(K’) N Wg”(f() where
1<p<oo,1<qg<ooand 0 <m<I For K €Ty, let (K,Px,Ng) be the affine equivalent
element, and V;, = {v : v is measurable and v|x € Pg,YK € Ty,}. Then there exists C = C(l,p,q)
such that

1/p 1/q
m—Il+min ,i—é
[Z HU”%/;(K)] < Ch I+min(0, £—2) [Z |v]|4 ?(K)] ’ (3.7)

KeTy, KeTy
for allv e V.

Lemma 2 : Let I, denote the interpolant of v. Then for all v € W) N C"(Q) and 0 < s <
min{m,r + 1},
_ m—s—d/p
o= Inllmo < CH™ 7y (338)

When v(x,t) is defined on the entire time interval (0,7"), we define

[l := sup [lo(-, )k ,
o<t<T

- 1/2
log = </0 HU('»t)szt> :

For the analysis of the fully discrete approximation we use At to denote the step size for ¢t so that
t, =nAt,n=0,1,2,..., N, and define

lv

f(tn) - f(tn—l) ) (3.9)

dif = At



We also use the following additional norms:

ol = max 0"l

1/2
llollo,e = [Z At Hv"Hi] :
n=1

4 Semi-Discrete Approximation

In this section we present the analysis of a semi-discrete approximation to (2.14),(2.15). We begin
by introducing some notation specific to the semi—discrete approximation and cite some lemmas
used in the analysis.

For 0, := 0 + vhu- Vo we define

A(w, (u,7), (v,9)) = (7,¢w) = 2a(D(u),u) + 2a(7, D(v)) + a1 — a)(Vu,Vv), (4.1)
1
B(u,v,7,0) = (u-Vr1,0,) + §(V -uT,0), (4.2)
( V) = (W - Vu, V)7 (43)
1

éw,u,v) = 3 (c(w,u,v) —c(w,v,u)) . (4.4)

Lemma 3 : [10] For u,v,w € X, there exists a constant Cy such that
e, v, w)| < Cu a2 Va2 [T [ w2 (4.5)
|

Note

(i)  é(u,v,w)=c(u,v,w) when V-u=01in Q, and u =0 on 9. (4.6)
(i)  é(u,v,v) =0, even when V- u # 0. (4.7)
(iii) For u € X, from the Poincare-Friedrich’s inequality we have that there exists a constant
Cpr = C(Q) such that [ul|® < C%4 | Vul? . (4.8)

The operators A(-, (-,-),(-,+)) : X x (X x HYQ)™") x (X x H{(Q)"™") — R, and B(-,-,-,-) :
X x X x HY(Q)™" x HY(Q)™" — IR are the same as that used in [2],[14]. When u = v we omit
the second variable in B(,-,,-).

Lemma 4 : We have that
B(u,7,7) = vh(u-V1,u-Vr). (4.9)

Proof: On integrating (u- V7,0) by parts we have:

1
B(u,v,7,0) := —(u-Vo,7) + vh(u-V7,v-Vo) — i(V-ua,T). (4.10)

Setting v = u, 0 = 7, and combining (4.2) and (4.10) the stated result follows.



Lemma 5 : Forw € X, (u,7) € X xS, and h sufficiently small, we have

A(w, (0,7), (0, 7)) + AB(w,7,7) > Ca (7> + [[u]}) .

Proof: Using the definitions of A and B we obtain

Afw, (wr)(w ) + AB(w,7.7) = |[7]* + (r.vhw- VT) = 2a(D(w),7) = 2a(D(w), vhw - V7)
+2a(r, D(u)) + a1l — oz)||Vu||2 + Avh||w - VTHZ

1
> |7l* + a(t = a)[Vul]? + Avh |w - V7* — Sl
1 1 2h?

- 3P W Ve = Jal = a)[Tul? - 5w Ve

1, 9 al—a) 9 v2h? av?h? 9
o 1 _ _ . 411
> gl STl ¢ (vh - S5 ) e vrP (a)
> Ca (HTH2 + HuH%) , for h sufficiently small, using (4.8).

Now, we define the semi-discrete approximation of (2.14),(2.15) as:
Find (up, 1) : [0,T] — X x Sy, such that

Re (llht,V) + Re E(Uh,uh,V) + (1 - Oé)(Vllh,VV) + (ThaD(V)) = (f,V), Vv E Zp, (412)
)‘(Thbo-) =+ )\B(Uh,Th,U) + )‘(ga(Thavuh)vo-uh) + (Th,o-uh) - ZOZ(D(Uh),Uuh) = Oa(413)
Vo eSy.

4.1 Analysis of the semi—discrete approximation

In this section, we show that, under suitable conditions, a unique solution to the discretized system
exists. Fixed point theory is used to establish the desired result. The proof is established using the
following four steps.

1. Define an iterative map in such a way that a fixed point of the map is a solution to (4.12),(4.13).
2. Show the map is well-defined and bounded on bounded sets.
3. Show there exists an invariant ball on which the map is a contraction.
4. Apply Schauder’s fixed point theorem to establish the existence and uniqueness of the discrete
approximation.
Theorem 4.1 : Assume that the system (2.3)-(2.8) (and thus, (2.14)-(2.15)) has a solution (u,T,p) €
L2(0,T; H*1) x L*°(0, T; H™) x L?(0,T; H*Y). In addition assume that k,m > d/2, and

IV ulloo; [7lloos VT lloos [[0llet1, [1Tllm1s [[Pllg+1 < Do for all t € [0,T]. (4.14)



Then, for Dy and h sufficiently small, there exists a unique solution to (4.12)-(4.13) satisfying

T .
/ (lu=wsl? + [V(a—wy)|?) dt < Cpminthmatt} (4.15)
0
sup HT_ThH < Chmin{k,m,q+1} ' (416)
0<t<T

Proof:
Step 1: The Iterative Map
A mapping ¢ : L*(0,T; Z3,) x L>=(0,T;Sy) — L?(0,T; Zy,) x L*(0,T; S,) is defined via:

(ug, 72) = &(uy, 1) where (ug, 1) satisfies

Re (ug¢,v) + Reé(up,ug,v) + (1 —a)(Vuy,Vv) + (2, D(v)) = (f,v), YveZ, (4.17)

/\(TQtva) + )‘B(ula7—27a) + (TQ7JU1) - QQ(D(uh)aaul) = _/\(ga(Tlvvul)ao-’ul)’ (418)
Vo eSy.

Thus, given an initial guess (up,7,) ~ (ui,71), solving (4.17),(4.18) for (ug,72) gives a new ap-

proximation to the solution. Also, it is clear that a fixed point of (4.17),(4.18) is a solution to the

approximating system (4.12),(4.13) (i.e. £(u1,71) = (uy,71) implies that (u;,71) is a solution to
(4.12),(4.13)).

Step 2: Show ¢ is well-defined and bounded on bounded sets

Note that (4.17)(4.18) corresponds to a first order system of ODEs for the FEM coefficients ¢, and
cr, of uy and 7y, respectively. That is, (4.17)(4.18) is equivalent to

!
All 0 C112 .
[ 0 A22 ‘| [ Cr, o F(t’ Cu2,c7-2) ’

where

F(t, Cugscr) = l (£, v) ~ Rellur, uz,v) = (1= a)(Vuz, V) = (12, D(v))

f
_)‘(ga(Thavuh)aaul) - AB(ulaT%O’) - (T2aau1) + QQ(D(uh)agm) ’
(

2

and Aj; and Ayy are “mass” (invertible) matrices.

Note that F : [0, T] x R%™(Cuz) 5 REmM(er2) _, R (Cuz) 5 R4™(Cr) s g linear function with respect
to the FEM coefficients cy,, ¢-,. Thus, for f(t) a continuous function of ¢, we have that F is Lipschitz
continuous. Then, from ODE theory (see [6]), we are guaranteed that there exists a unique local
solution for (cy,,cr,), and hence for (ug, 72).

Next, to establish the existence of (ug, 72) on [0, 7], we show that it remains bounded in the appro-
priate norms on that interval.

Multiplying (4.17) through by 2« and adding the result to (4.18), (ug, 72) is equivalently determined
via

2aRe (ug4,v) + 2aReé(up,uz,v) + A(ug, (ug, ), (v,0)) + A(m2t,0) + AB(uy,72,0)
= 2a(f,v) = Mga(m1,Vu1),04,), V (v,0) € Z, X Sp. (4.19)



Choosing v = ug, 0 = 75 in (4.19), and using (4.7),(4.11), implies

aBelwl? + 2 i + gl + CC vy (A = w20 (5 + 2(10‘_60» Jay - Vg
< 201 gl + Alga(rs, Tup)l (2] + vhlfur - V]
< Gy, 4 U= iguy) 4 g, V)P
ol + 5 - V. (4.20

Thus for ¢; = min{aRe, A/2}, and the restriction vh < 2\(1 — a)/(2 — «),

d
7 (haof® + 11m?) <

2(1+ C%1)

AQ
£)|? ZMga(r1, Vur)|? .
o= M2+ T llga(m, V)|

Hence for 0 <t < T,

2(1+ C?
Jwal(t) + 7)) < Jlu2l*(0) + [I72]*(0) + 20+ Cpr) _PF)Hf||(2),—1
c(l—a)
22 g2
+ 1710126 00 [ VUL [ 0 - (4.21)

By the equivalence of norm in finite dimensional spaces, (and uy(0) = ui(0), 72(0) = 71(0)), we
therefore have that (uy, 7)) € L?(0,T; Z;,) x L>=(0,T; Sy).

Note that (4.21) also establishes that the mapping ¢ is bounded on bounded sets.
Step 3: Existence of an invariant ball for &.

We begin by defining an invariant ball.
Let R = ¢*pmin{k:matl} for 0 < ¢* < 1, and define the ball By, as

T
By, = {(V,U) € L*(0,T; Zy) x L™(0,T; Sy) - / lu=v|?+|V(u—-v)|?dt <R?, sup |[r—o|| <R}.
0 0<t<T
(4.22)
The exact solution (u,p, ) of (2.9)-(2.11) satisfies

2aRe (ug,v) + 2aReé(u,u,v) + A(uay, (u,7),(v,0)) + A(1¢,0) + AB(u,uy,7,0)
= 2a(p,V-v) + 2a(f,v) — A(ga(7,VUu),04,), V(v,0)€ ZxS. (4.23)

Subtracting (4.19) from (4.23) implies that

2aRe ((u — ug)¢, v) 2aRe é(u,u,v) — 2aReé(ug,uz,v) + A(ug, (u —w2), (7 — 1), (v,0))
A((T—=72)t,0) + AB(uy, (1 — 12),0)
= 2a(p,V-v) = A(ga(7, Vu),00,) — (ga(1, Vui), oy,))

—AB(u,uy,7,0) + AB(uy,7,0), V (v,0) € Zp x Sh. (4.24)

+
_|_
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Let

Ai=u-U , E=U-u (4.25)
Fi=r—-7 |, F.=T-n (4.26)
and ey =A+F =u—-u , & :=I'+F =717—m1. (4.27)

Rewriting (4.24) using these definitions, along with the choice 0 = F, v = E, we obtain
2aRe (Ey, E) + 2aReé(u,u, FE) — 2aReé(uy,ug, E) + A(uy, (E,F),(E,F))
+ MNFLF) 4+ AB(w, EF)
= —2aRe(A, E) — A(uy, (A, T),(E,F)) — AN(I't, F) — AB(u,I, F)
£20(p, V- E) = A((ga(7, V), Fuy) — (ga(r, Vi), Fuy)
—AB(u,uy,7,F) + AB(uy, 7, F) . (4.28)

We now proceed to bound E in terms of F, u, and u;.

For the ¢ terms we have:

é¢(u,u, E) — é(ug,ug, EF) = é(u—ug,u,E) + é(u,u—ug, E)
= ¢(u—w,u,F) + é(u, E+AE)
= é(u—up,u,E) + é(ug, A, E) (using (4.7) ) . (4.29)

We estimate the first term on the rhs of (4.29) by

fu—u,w,B)| < Ciflu—w|"?|V(a—w)|"?Vu||[VE| (using (4.5))
C2
< alVE|* + fellllu — w[[[|V(u = w)|[[[Vu]*. (4.30)

For the second term on the rhs of (4.29)
|6(U1,A, E)‘ < ‘ - é((u - ul)’Aﬂ E)’ + |6(u7A’ E)’

< Crllu—w|'2|V(a—u)|ZVAIVE] + Collull| VA VE]
C? C3
< al|VE|? + 4713||u—ulII%HV/\H2 + el VE[* + él!u!@oHV/\HQ- (4.31)

In view of the estimates (4.11) and (4.9) we proceed next to consider the terms on the rhs of equation
(4.28).

02

(A, BE) < MJIEN < e[ VEIP + ﬁIIAtIIQ, (4.32)
1

(e, F) < TIFI < el FI1P + TGGHMQ‘ (4.33)

For the pressure term we have
2a|(p, V- E)| = 2af((p—P), V- E) 2a|p =PIV - E]
2ad"/? |p—P||VE|

a’d
o lp = PI* + ezl VE| . (4.34)

IN A

IN
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Writing out the A term on the rhs of (4.28) we have the terms
A(uy, (A1), (E,F)) = (I'Fy,) — 2a(D(A), Fy,) + 20, D(E)) + o(1 —«a)(VA,VE) . (4.35)
For the first term in A:

(I,F,) = (I,F)+ (I,vhu, -VF)
ITIE + (T vk ffug - V|

1 1
= ellFI? + —ITI* + v?h? lug - VFI? + |0 (4.36)
468 4
Similarly,
2
«
20 (D(A), Fuy) < el FI* + gHD(A)H2 + V2% Jur - VF|? + o® D)7, (4.37)
2
!
2a(I.D(E)) < enlVEIP + 1T, (4.38)
a?(1 — a)?
a(l-a)(VVE) < VB + =L yorye. (4:39)

Bounding the g,(+,-) terms on the rhs of (4.28) is more involved. We rewrite the difference as the
sum of three terms and then bound each of the terms individually.

We have that
(ga(T7 vu) - ga(Tla vul) ) Ful) = (ga(T — 71, vu) )

= (ga(T — 71, vu) )
+ (ga(7-7 V(u —ux

Spe

1) + (ga(Tl,V(u—ul), Fu1)
1) + (ga(Tl —T,V(u— 111), Fu1)
Fa). (1.40)

~—

For the first term on the rhs of (4.40)

(ga(T —71,V0), Fyy) Al(r = m) Va[ [|[F]| + 4][(7 = 71) V| [vhu - VE]

<
< 4d||Vullso|l(r = ) IF + 4d | Vullo||(7 = 7)|| [[vhuy - VF|
4d?
< en|FIP + g\lvllllioll(f—ﬁ)\l2 + v?*h?|vhu, - VF|?
+4d?| Va2 )| (r — )| (4.41)

For the second term

IN

(9a(T =71, V(u —w)), Fu,) Al(r =) Ve —w)[[|[F]| + 4[(r =) V(a —w)|| [[vhuy - VF]

4
ews|| FII” + all(T—ﬁ)V(u—ul)Hz + V2 R?|lvhuy - VF|?

IN

+4)|(r = 71) V(a —up)|? . (4.42)

Note that
I(r = 7) V(u =)l < [[(r = 7) |2 [V (=) s
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and, using (3.7),

7 = T2 < Crh~m — T
< Cih~%m — 7| + Crh~ 4|7 = 7).
Thus,
IT—=7illpa < 7 =Tllga + |17 =71l
< |lr=Tlga + CHYry = 7| + CL™¥4|r — T
< 20rh™ =4/ 7 sy + Crh= 4 — 7| . (4.43)
Similarly,

IVa—w)p < [Va=U) + Ch ¥ u—wl + Ch~ ¥ la—ul|x
201h* = Ju|jpy + Crh™ ¥ ju—uy |y . (4.44)

A

Combining (4.43),(4.44) with (4.42) yields
(9a(r = 1, V(u—w1)), Fu,))l < esl|FI? + v?h?|luy - VF|?

N 4 . : 2
(2 1) (20mm I + Co i = o)
€13

; ; 2
(20" sy + Crh M u = wr)” (4.45)

For the third g,(-,-) terms on the rhs of (4.40) we have

(9a(m, V(u =), Fuy)l < Al V(e —w)[[[F] + 47 V(u—w)| [[vha; - VF]|
<Ad|[7lloollV(a = w) [H[F] + 4d [[7]loo[[V (0 = wi)[| [[vhuy - VE]]

4d?
< eullF|| + aHTHgoHV(U —w)|? + 2% ||u; - VF|?
+ Ad||T]% IV (u — )| (4.46)

What remains is to estimate the three B terms on the rhs of (4.28). We begin by rewriting the
terms in a more convenient form.

—-B(w,I',F) — B(u,uy,7,F) + B(wy,7,F) = B(u,7,F) — B(u,uy,,F)
= —B(u—w,u,7,F) — B(u,u,I', F)
= B(u—uj,u,I'F) — B(u—uj,uy,,F)
— B(u,uy,T,F) . (4.47)

For the first B term in (4.47) we have

(=) - VT, F) + ((u—wy) - VT, vhu - VF) + %(V~(u—u1)I’,F)

[(a—w) - VI[[[F]| + [[(w =) - VI[[[vhag - V|

B(u—uj,u, I, F)

IN
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1
+5 IV - (w—u) LI ]

1 1
< easlFIP + (o + Pl =) - VI + v2h?|luy - VF?
4615 4
1
+esllFI* + o[V (w—un)T|* . (4.48)
be1e

For I, the interpolant of u we have, using (3.7),(3.8),

lu = ai oo

< u—Lullee + 1w —u1floo

< Ol |y + Coh 2L, - wy

< Ol |y + Coh V2L, — a4 Coh™ P u— |

< Crph®™ 192y + Coh™ 92| — wy ] - (4.49)

Using this estimate we obtain that

I(a =) -

Also,

dfu — 1y [|oo|[ VT
d (Coah =12 a1 + Coh™ 2w = w]) | VT) . (4.50)

vr)|

IN

IN

IV-(u—u)l|| < d2|V(u—u)ll|l]

< Cud2hm =42 a — w17 g - (4.51)

Combining (4.48),(4.50), and (4.51) we have

B(u—up,u,T,F) < (a5 + e6)||F||* + v2h?||u; - VF|?

1 y p ,
+(E+Z)d2 (Cnvhk+1 W2 ugy1 + Coh d/2||u—u1||> VT2
1 o 1 )
+ T (Csd2hm =72 flu s 7 st ) - (4.52)

For the second B term on the rhs of (4.47)

B(u—uj,uy, 7, F)

IN

IN

IN

(u—w) -V, F) + (u—uy)-Vr,vhu - VF) + %(V'(u*ul)TvF)

1
I(a =) - Vo[ [P + [[(u = w) - V7l [vhuy - VE| + [V - (0 —a) 7] || F]]

1
err||[FII* + [(u=y) - V7|* + VB [Juy - VF|* + ZH(Ul—ul)'VTH2

deq7
1
+es||F* + TGISHV S(u—u)7?

(a7 + es)||F|? + v*h? |Juy - VF|]?
+d’ (1 i 1) 112 e = w2 7 — ) P (4.53)
de17 4 e 16¢€18 > ' '
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For the third B term on the rhs of (4.47)

1
B(u,u;,I'F) = (u-VI,F) + (u-VI,vhuy -VF) + i(v-uF,F)

1
< - VEFIE] + fla- VE[vhjlay - VE 4+ SV - a Dl £
< (a9 + e0)|FI? + v?h* |ui - VF|?
(e D e gz (4.59)
—+ - ——|[|Vu : .
4deqg 4 e 16¢€29 >
Returning to (4.28) and putting everything back together:
Ad a(l —a)
QRB*HEW + §deF||2 HFH2 + ———|VE|”
2h2
(uh — 71/ 2?5—@)) |ug - VF|? — 2a(er + e3 + )| VE|?
ct 2 C22 2 2
~ 20 IVal?la - wlff — 2a Hu—u1H IVAI™ = 2077 [[ulls [ VA

C?
< 2aRe —CE|A* + 20465HVEH2 + IR + el F2
4es deg
1 1
allPIE + T2 + 2T + o2 VAP
€8

1 a? a?
+ZHTH2 + VR?|juy - VF|? + 7HVAH2 + el FII* + *HVAHQ + V2R?|juy - VF|?

(1—a)

\vNlE E|?
e VL[ + en|[VE]

o? 2 2
+ o |IT)? + exoll VE]
€10

A a?
+7||Ft||2 + Aeo|| FII” + ﬂL;dllp—PH2 + er| VE|?

4d2 .
+A7IIVUH 7= 7|2 4+ Md® [Vu| 2|7 = 71]? + Xew||F|I* + APhP|jay - VF|?

4 / ; 2
+A (6 + 4) (20rhm = |y + Crh= Y |ry - 7))
13

, . 2
(2Crh* = ull + Crh= u = wy 1)
o1
+ Xews||F|? + A2h?juy - VF|? + Md? (614 + 1) I7)1% Ju = ug]]? + Xews| F|?
+)\V2h2|]u1 VFH?

A+ )8 (Conh 2 sy + O = w)) VT
4615 4

+A

; 7 2
o (Cud P02 i rll) o+ s + cao) P

+ Av2h%u - VF|?
+X (€17 + €8)|F|I? + Av2h? |juy - VF|?

1

3
2P —
* (4617 *

d 2
T6eis [Tlloo [V (1 = w)

1
1) 197 = ]+
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4+ (e19 + €20) | FII* + Av?R? |luy - VF?

nd (G Y e A g ez e (4.55)
4619 4 & 16620 o

Now, rewriting (4.55) with all the £ and F' terms on the LHS and the RHS terms written in terms

“controlled” by the ball, terms controlled by interpolation approrimation, and terms controlled by

both the ball and interpolation approximation, we have:

Ad

a(l — o
Q%HF‘P + ((2) — 204(61 + €3+ €4+ 65) — (67 + €10+ 611)> HVEH2

d
Re —||E|)?
aRe - ||E| +
1
+ <2 — (€6 + €3 + €9) — A(€6 + €12 + €13 + €14 + €15 + €16 + €17 + €18 + €19 + 620)) ||F||2
7 «
h—1v?h? (5 — 6)\) -VF|?
+ (vh =202 - g + 00 - VF

o (1 1
=l {2ad? (= 1) ol +0d (o + ) 197

o f | 4d? 2 ) 2
+ =7l ATHVUHOO + 4Ad7[[ V5

IA

43
+ju - ullll{QQIIVUI2+>\ 166, HTHQ}

4
+ lu—w |37 — 7|2 {)\ (613 + 4) 0%4h—d}

11 a? & A
T2l + —+ 2 4 Vul? T 2{}
+

a?(1 —a)? L 1 1
+ VT {4611 + 202, h* 12 d\|u||i+1 + Ad <4 4> Jall2,

02 2
+ (A {2aR } Ak {2a 2 uf% + — + “}
5 269 2

a? 4
+lp - PIIQ{ 67} () o2zl

1

+Hu—u1HQ{2)\(4+ >d202 d'uvru?}

2 1 2
+|lu—u 2c VA
H 1”1 { 163” H }

) P
+r =l {)\ (61 + 4) C716h*" “Ilullﬁﬂ}

4
o= wlf {3 (2 v a) cher ez v et L o)

With our assumptions that 0 < a < 1, and A > 0, we can choose values for the ¢;’s, and vh
sufficiently small such that the left hand side of (4.56) is bounded below by

a(l —a

vh
OJ%*HEH2 IFII* + *HFH2 + )HVEH2 + 7Hu1'VFH2- (4.57)

2dt‘
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Let D;, i =1,...,6 denote constants dependent upon u, p, 7, their derivatives and 7T'. (Recall the
definition of ¢*, R in (4.22), and Dy in theorem 4.1.) As usual Cj, j = 4,...,10, denote constants
independent of the solution u, p, 7 and the mesh parameter h.

Using (4.57) and integrating (4.56) we obtain

t
IEI2®) + IFI*t) + /0 IVE|*(s)ds < R*CiDo

+ RYCshd

+ D1 h2m+2 + D2 h2m+2

+ CGDthm + D3h2k:+2m+2—d

+ Dyh* %2 4 CDoh**

+CgDoh?™+? 4 Dy t2m+2=d

+ R2CyDh?"

+ R?Dgh?"

+ RQC’ﬁDOh%_‘j

+ R2Cy Doh?m+2-d | (4.58)

Now, in view of (4.27), we have that for h, Dy, and ¢* sufficiently small

I — m2*()

IN

2(F[*(t) + 2|T)1P(t)
¢R? + ChoDo (th + h%) + 2Dyh2m+?
¢R? | (4.59)

IN

IN

where 0 < ¢ < 1. Similarly, for h sufficiently small

o —wl®(t) < 2E|*(t) + 2|A*()

< CR2 + C10Do <h2m + h2k) + 2D0h2k+2 (460)
T ~
hence / |u—wup|?(t)dt < gRQ . (4.61)
0

Also, for h sufficiently small

IN

T T
2/ IVE|2(t) dt + 2/ IVA|2(2) de
0 0

c1R? + 2D Th*
gRQ . (4.62)

T
| 19— ) ey at

IN

IN

Combining (4.59)-4.62) we have that for h sufficiently small that £ is a strict contraction on the ball
defined in (4.22).

Step 4: A direct application of Schauder’s fixed point theorem now establishes the uniqueness of
the approximation and the stated error estimates.
|
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5 Fully-Discrete Approximation

In this section we analyse a fully discrete approximation to (2.14),(2.15).

We assume that the fluid flow satisfies the following properties:
[l s 1Tl s IVUlloo, [VTlloo < M, (5.1)

for all ¢t € [0, 7).

Note that it follows from (5.1) and inverse estimates that
4™ oo s VU oo < M~ M . (5.2)

Below, for simplicity, we take M = M.

To simplify the notation, the following definition is used in the analysis.
Definitions:

b(u,7,9) = (u-Vr,). (5.3)

To obtain the fully discretized approximation, the time derivatives are replaced by backward dif-
ferences and the nonlinear terms are lagged. As we are assuming “slow flow”, i.e. Re = O(1), we
use a conforming finite element method to discretize the momentum equation. For the constitutive
equation for stress, we use a streamline upwind Petrov-Galerkin (SUPG) discretization to control
the production of spurious oscillations in the approximation. The discrete approximating system of
equations is then:

Approximating System
Forn=1,2,...,N, findu} € Zy, 7, € Sy such that

Re (dyuj;,v) + Re e (w) ™ ufl,v) + (1= @) (Vuf, Vv) + (77, D(vV)) = (£",v), V€ 2, (5.4)

1 ~ n n— n = By ny ~ n— n— ~
X (130,0) + (de1y o) + b (uh 1,Th,a) —A(D(up),0) =— (ga(rh 1,Vuh 1),0) ,0€S8, (5.5)

where ¢ := o +voy}, o} = uz_l - Vo, v is a small positive constant, and A = \/(2a).

The parameter v > 0 is used to supress the production of spurious oscillations in the approximation.
Note that for v = 0 the discretization of the constitutive equation is a conforming Galerkin method.
The goal in choosing v is to keep it as small as possible, but large enough to control the generation
of catastrophic spurious oscillations in the approximate stress.

To ensure computability of the algorithm, we begin by showing that (5.4)-(5.5) is uniquely solvable
for uy and 73 at each time step n. We use the following induction hypothesis.

(IH1) H“Z_IHOO’

‘ n—1

Lemma 6 Assume (IH1) is true. For sufficiently small step size At, there exists a unique solution
(up, ') € Zp, x Sy, satisfying (5.4)-(5.5).

18



Proof: For notational simplicity, in this proof we drop the subscript i from the variables. Choosing
v =u}, o = 77, multiplying (5.4) by A and adding to (5.5) we obtain

a(u”, " u", ") = A (f",u") +Xi—i (un_l,u") - (g(z (T"_l, Vu"_l),?”) + Ait (T"_1,7"> , (5.6)

where the bilinear form a(u, 7;v,0) is defined as:

R _ _ 1 1
alu,7;v,0) = /\Ki (0, v) + A Re c(u" 1 u,v) + X(1 — ) (Vu, Vv) + X (1,0) + A (1,0)
+b (u”_l, T, 0) +b (u”_l, a1l VU) D\ (D(u), vu™ b Va) .

We now estimate the terms in a(u”, 7"";u", 7). We have

s1

’(u”_l - Vu, u)’ < s

c
=
[l

o vl fu]

dK?
2 2
e1 | Vul]” + e lull”,

R IR e [ MR A I

IN

< e Hu“fl . VTH2 + 412 HTH2
bt rou" V) = v Hu”_l . VT‘ 2,
‘(D(u),yu”’1 w)’ < |ID()| Huun*1 : vTH

< e |D@W)?+ i Hun—l : vTH2

2

2
< e||[Vul® + v Hu"_l . VTH .
4eg
Applying these inequalities to the bilinear form a(-,-; -, -) yields
- 1 dK? -
a(u”, 7 u", ") > ARe|-— —— | 0"+ X((1 — @) — Re e1 — e3) | Vu|?
At 4eq
1 1 1 ni2 n—1 n 2
+(>\+At—4>\|7 I +<1/—62—463>Hu \%s H
Choosing €1 = %,62 =g,63 = (1Za),y < @, and At < min{Ri;’?@,V}, it follows that the
bilinear form a(-,-; -,-) is positive. Hence, (5.6) has at most one solution. Since (5.6) is a finite

dimensional linear system, the uniqueness of the solution implies the existence of the solution.
|

The discrete Gronwall’s lemma plays an important role in the following analysis.

Lemma 7 (Discrete Gronwall’s Lemma) [9] Let At, H, and ay, by, cn, Vn , (for integers n >
0 ), be nonnegative numbers such that

l l l
ay +At2bn < AtZ’ynan + Athn + H forl>0.

n=0 n=0 n=0
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Suppose that At~y, < 1, for all n, and set o, = (1 — At~v,)~L. Then,

l l l
a +Athn < exp(AtZUn'yn> {Athn —i—H} for1>0. (5.7)

n=0 n=0 n=0

5.1 Analysis of the fully—discrete approximation

In this section we analyze the error between the finite element approximation given by (5.4),(5.5)
and the true solution. A priori error estimates for the approximation are in theorem 5.2.

Theorem 5.2 Assume that the system (2.3)-(2.8) (and thus, (2.14)-(2.15)) has a solution (u,T,p) €
C2(0,T; H*1) x C2%(0,T; H™') x C(0,T; HtY). In addition assume that At, v < ¢h¥?, and

[alloo; [[VUlloo, I7lloc, 1V Tlloo < M for all t € [0,T7]. (5-8)

Then, the finite element approximation (5.4)-(5.5) is convergent to the solution of (2.14)-(2.15) on
the interval (0,T) as At, h — 0. In addition, the approzimation (uy,1p) satisfies the following error
estimates:

llap —ullooo + llmn = 7l < F(ALv,h) (5.9)
llup —ually + N7 = 7lloo < F(At v, h) (5.10)
where
FALvh) = O (0 ullogs + 05 Tadllops) +C (1l s + 57 il g

+C W pllg gy + C (P Il joys + B N7 i)
+C |t ([l + lielloyo + I7ello1 + 172l 0)

+C v (I, + l17ellco) -

In order to establish the estimates (5.9)-(5.10), we begin by introducing the following notation. Let
u” = u(t,), ™ = 7(t,) represent the solution of (2.14)-(2.15), and uj}, 77" denote the solution of
(5.4)-(5.5).

Define A", E", T, F", ¢,, €, as

A" =u" - U, E" =U" — u},
"=m"-7" F'=7T"—17,
€, =u—uy, €& =T — T

The proof of theorem 5.2 is established in three steps.
1. Prove a lemma, assuming two induction hypotheses.

20



2. Show that the induction hypotheses are true.

3. Prove the error estimates given in (5.9),(5.10).
Step 1. We prove the following lemma.

Lemma 8 Under the induction hypothesis (IH1) and the additional assumption

-1
(IH2) Y AL|VE"| <1,

n=1

we have that
1% 1|2
&+ |F'|” < cat,np), (5.11)
where
G(Ath,y) = C (R [allf gy + R 2 Nwill pr) +C (B2 UG s + B2 2 Ul 1)

2 2 2 2 2 2
+ C p?t? ‘”pH|0,q+1 + C|At (Hut”0,1 + Huttuo,o + HTtHo,1 + ”TttH(),o)

2 2
+ €02 (ImllSy + N7l 0)

Proof of lemma 8: From (2.14)-(2.15), it is clear that the true solution (u,7) satisfies

Re (diu",v) + Rec (u’g_l, u",v) + (1 —a)(Vu",Vv)+ (7", D(v))
=" v)+ (", V-v)+ Ri(v), YV E Z, (5.12)
(o) + b(w " 5) — A(DW").8) + 1 (7.5)
=~ (g0 (771, V1)) + Ra(0), Yo € S, (5.13)
where
Ri(v) := Re (dyu™,v) — Re (u},v) + Re c(u} ', u",v) — Re c(u",u",v),
and

Ro(o) = (di7",0) = (r'0) — v (7' w™" - Vo) + b~ 7", 5)
—b(u", 7", 5) + (ga (7' VUR 1), 5) = (g0 (77, V"), 5).
Subtracting (5.4)-(5.5) from (5.12)-(5.13) we obtain the following equations for €, and €;:

Re (diey,v) + Re c(u) ' ey, v) + (1 —a)(Vey, VV) + (7, D(v))
(P",V-v)+ Ri(v), YV € Zp, (5.14)

(dier,0) + b0 er,5) — A(D(en),5) + %(GT,(}):RQ(U), Vo € Sp (5.15)
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Substituting €, = E" + A", ¢, = F"+T", v =E", 0 = F" into (5.14)-(5.15), we obtain

Re (d;E",E") + Re c(u’ !, E", E") + (1 — a) (VE", VE") + (F", D(E")) = F,(E")(5.16)
< 1 -
n PN -1 pn pn n - n pn
(F", B") + b(up !, B, F") — A (D(E ),F)Jr)\(F,F)

Fo(F™)(5.17)
where,

FI(E"Y) = (p",V-E")+ Ry (E") — Re (d,A",E") — Re c(u}~', A", E")
—(1—a) (VA", VE") — (T, D(E")),

Fo(E") = Ry(F") = (4", F") = b(uy ', T F") + A (D(A"), F") — % (T, F") .
Multiplying (5.16) by A and adding to (5.17) we obtain the single equation
Re A (d;E",E™) + ReAc(u} ', E",E") + (1 — a)A\ (VE", VE") + (d,F™ F™)
+ b(wy L ETEY) — A (D(E"), vt VE) + 5 (F"F”)

= M\F(E") + Fo(F"). (5.18)
Note that
(d,E",E") = Ait (B"E") - (B E")]
> o [IIE"H2 — e ]
] el

and similarly, (d,F",F") > ;& [HF"H2 — HF”AHQ}. Thus, we have

I;Zj [||E"|y2— HE”—lm s [HF”\ HF"—IM (1= )} | VE"|? +uHu;; ovEr
+§ |E"|* < —Re Ac(uj ™', E", E") - b(up ' F", F") + A (D(E"), vuj " - V")
—X(F" v~ VE") + AR (B") + Fo(F™). (5.19)
Multiplying (5.19) by At and summing from n = 1 to [ yields:
A ]+ 5 [l - ] - o S ariwE e 3 ot v
n=1 n=1
+izl:At|F”|2 < Atz[ Re Ac(u ' E" E") — b(u} 1, F" F")
n=1
+ A (DE"), pup - VET) - o (F” vyt VF”)]
+AAL zlj Fi(E™) + At zlj Fo(F™). (5.20)

n=1 n=1
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We now estimate each term on the right hand side of (5.20). For c(u}~*, E", E") we have that

’c(u;LL*l?E”?E”)‘ < ’(uZ’l-VE",E")‘
< Jup - vEr| 1B
< it dIver) e
< ¢ HVE”H —|—d HE”H , using (IH1). (5.21)

Note that for v = 0 on 02, applying Green’s theorem we have

b(v,r,0) = —b(v,0,7)— (VvT,0), (5.22)
Sob(v, ) = —%(v.vm). (5.23)
Using (5.23),
b(up B E)| = %(VuZ_IF”,F”)‘
= % (V- = U B R (VU R R
< S s e e
< % ’V-E”_luoo||F”||2+%M\|F”H2,using (5.2).
Next,
](D(E") vul” Pwﬂ)' < |DEY) Hl/uh 1 VF”H
< |IVE|| |y 1-VF”H
< e|VE"P+ — Huh L VF”H
Also,

‘(F”,VuZ’l-VF")‘ = ‘(F" -1 VF")‘
< vlE |fupt - vET|
< HF”HQ—i—fHuz_l-VF”HQ.

Thus, for the first summation on the right hand side of (5.20), we have

At Z{ Re Ac(up~ ! E", E") — b(ul !, F" F")—i—)\( (E™), VuZ_l-VF") —;(F”,uu}:_l-VF")}

Re MdK?

l
Z (Re X1 + Aeg) || VE™ |2 —|—Atz

n=1
+Atnz::1 (2M +5 |vE_+ 6;’) [iadlEe

23
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= 4eq )\463 h
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Next we consider F; (E™).

0", VEY| =
<
<

(dA" BY)] <
<

e(uy ™ AN <
<
<

(VA" VE")| <
<

(", D(EM)| <
<
<

For the R;(E™) terms we have:

|(dpa”, BE") — (0, E")| <

‘c(uz ,2u",E") — c¢(u",u" E")‘ =
<

<

<

_|_

|(p" —P",V-E")|
n ny it n
[p" =P dz [[VE"||

d n n
— " =P

2
64HVEn|| +4€4

B d,A™]
B + 7 A"
JE ) {|u - VA

oyl Hun-lu dz | VA"

1B |1* + == VA",

IVE"| HVA"H
€5 HVE”H +

IDE")]] IIF”H
IVE[[{IT"]

e | VE"|” t

HVA”H

HF”II

1
2 2
B+ 7 lldeu”™ — uf]

‘c(u
+c(u

Z_l _un—l’unjEn) + C(un—l Y

n—1 un7 un’ En)‘

2

tn
At/ g |? dt.
tn 1

d2M2

Combining (5.25)-(5.30) we have the following estimate for F; (E"):

) . A dm
‘Afl(En)‘ < )\(64 + €5 + 66) HVE”H2 + A Re (2 + 5> ||EnH2

+A Re

+5\<

Re sz

el A

1" =P ’

4

1—«
4 o )>WA”|| + Reg A" P + A~
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using (/H1).

1’un7En)

dM ||| B + da A B + d |(u

Bl (G2 v+ S e

HF"H

A”‘1H2

(5.25)

(5.26)

(5.27)

(5.28)

a" )| IE

(5.29)

[t v | B+ At v | B+ o — ) et B

(5.30)



+2 Rei | dpu™ — ul || + A RedQFAt /tt (g ||? dt. (5.31)
Next we consider the terms in Fa(F").
(@I F")| < HF”H?ﬁndtr”n?. (5.32)
b(up=, " B = [b(up T BT+ b(u) T vEY)
< Huh Loor | B+ gt v e
< 3 || IVEIET )+ dE gt eE)
< R+ [+ e, (5.33)
(DA™, )| = [(D(A™),F™) + (D(A™), vF)].
< IFE 4 2 R 4 VAT (5.34)
(T E)| = J@ ) o o)
< HF"H2+V2\|F2H2+§Hr”H?. (5.35)
For the terms making up Ro(F™) we have:
(e F) — (B < [EPP e 7 (5.36)
|(7", vF,)| = ‘(Tt",yuzfl-VF”)‘

‘b vu)t F” Tt”)‘

b= 7 B+ | (Vo= B, )| (using (5.22) )
ap | E )+ (V- - v )|

- (vu" LUt )|

INIA

1%

IN

A Il o2 1 o A 7 | I L TN

v

+ \v Tz e N

(2 |7 ) I S (2 [ ) el

<

+”:K2d’||v7p||2, (using (5.2) and (IH1) ) . (5.37)
b(up=t, 7 B = b(u, 7 B = (- ety e B
S R |

IN

S[E 7+ 5oz, ot - e

IN

1. 2
”Fn”Q + 2 HFZH? + 5d3]\4-2 H_Enfl _ AL + unfl _ unH
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< IR+ (R 4 Sl B 2 A
+%c53M2At /t " || dt. (5.38)
n—1

In order to estimate the g, terms in F5(-) note that

ga (L V) =g (7 VUY) = ga (VO U)o (L V@ —u )

+ga( “Lv” ))+ga< A 1VU)
+ga(T"1 "IVU)Jrga( -7 Vu)
= _ga( -1 VEn 1) _ga< -1 VAn 1) _ga< -1 V( —u"" 1))

—Ga (F” L vu® ) — Ga (I‘" L vu" )—ga (T — 7l vun ) . (5.39)
Bounding each of the terms on the right hand side of (5.39) we obtain

(90 (71, vE ) B0 <
<

o (" VB[]

ad || o |
S R e SRS R ER)
(g (o var ) 8| < s VA E 4 2||F3|| , (5.41)

P tn
(g0 (7", V(" —u ) < 8d2K2At/ IVwil|? dt+ |F"| + 2 [F7)2, (5.42)
n—1
P 2
8 M2 [ B B 4 02 (5.43)
P 2
(g0 (1771, v ) B7) | < 80| 4 B2+ 2 R (5.44)

F =S 2
\/\/\:/ ~— —
IN

2 tn
8d2M2At/ 7 l? dt + [|[F™))? + 2 |F212. (5.45)

tn—1

IN

Combining the estimates in (5.32)-(5.38), (5.40)-(5.45), we obtain the following estimate for Fo(F™):

e < alpe | (re )

A
A+

8d2K?

+|E2 (11+ + | ver| +A+i>

el (3 d3M2)+HF” ' (sa2)

A2 @HWWH (d[;) TR (55 ) + I (3)
+oarf (8d2K2)+HA” [ (5ae) + o] (sar?)
+Zudt7 — 7 +Zd2 (22 + || VE | ) 2 —|—ZK2dHVTt”HQ
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. tn . tn . tn
+gd3M2At/ 2 dt+8d2M2At/ Imal|? dt + 8d2K2At/ V7w, | (846)
t t t

n—1 n—1 n—1

With the following choices: €1 = 1(21;2:))\,62 €4 = €5 =€ = €7 = %,ug U'(= EY =0),7) =

T%(= FY = 0), substituting (5.24), (5.31), (5.46) into (5.20) yields

l 32 72 7.2
: 3A2 4+ 96d2 K2\
a))\E:AtHVE”HQ+ u—y2< = T+ >]§:AtHF”H

l l l
O S ALE? + Co Z ALF? +C3 Y At HVE"‘lH IF™||? + C4 Z At || A"

n=1 n=1

R

B+ 3

IN

n=1

+Cs Z At|VA™|? + = Z At ||d: A" + Cp Z AT + Re— Z At ||dya™ — u?|?

n=1 n 1 n=1 n=1
dK? 2
+( : )zmuvrnu SIS A+ LS At
n=1 n 1 n 1
2 L . 2
ZZAM? (M2+HVE”*1H JEAE +ZAth - P

+] At d<R€dM2 laellg o + d2M2IUtlloo+8dM2\ITtI!oo+8dK2HUtHol>

2
v ,
+ = K2 V7l - (5.47)

We now apply the interpolation properties of the approximating spaces to estimate the terms on
the right hand side of (5.47). Using elements of order k for velocity, elements of order m for stress,
and elements of order ¢ for pressure, we have

l 1 I l
2 AIVATIE+ D atvEniE < 6 (h”“ S At + B Y A ||Tnu$n+1>
n=1 n=1 1 —
< O (W ull} py + B2 71 s ) (5.48)

l

l
dOALAMF + Y AT +ZAtllp P2
n=1

n=1 n=1
< <h2k+2 ST At} + B2 Z At (7" + B2 Z At|jp" Hq+1>
n=1 n=1
2 2
< C (h2k+2 ”‘uH’O,k+1 4+ p2mt2 H‘T‘”O,erl 4 p2at2 ”’pH|O,q+1) , (5.49)

l l
STAL|GAMP = Y At
n=1

1 [tn  OA
At/tnllatdt

n=1
l 2 t t 2
1 n n /OA
< At | — / / 1dt / () dt) d
- n; (At> Q ( tn—1 > ( tno1 \ O *
< CRPPRlwlff g (5.50)
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and similarly,

l
> At[|dT™* < CR*" 2 17l[g o1 - (5.51)

n=1
Note that d;u™ — uf’ may be expressed as

1 [tn
du”—u":—/ uy (-, 1) (th—1 — t) dt.
t t 2At - tt( )( n—1 )

Also,

1 fte 2 1 tn )
— Uy (-, t)(toq1 — t) dt < 7/ uy (-t dt/ th—1 —t)“ dt
n / () (tamt — 1) T L MG
- 1At/tn w2 (-, t) dt
12y, Y '

Therefore it follows that

l

l
Z At||dea™ —u?|? < Z / 12At/ u? (-, t) dtdx
n=1 Q2

n=1 tn—1
1
= |At| HuttHoo (5.52)
Similarly, for d;7" — 7;* we have
: 1
S Atdr" =P < AR (5.53)
n=1

In view of (5.48)-(5.53), our induction hypotheses (IH1),(IH2), and with v chosen such that

L (38X 4+ 964 KA 5\
from (5.47) we obtain
Re A 2
; gl 5 HFlH )\ZAt IVE"|? + 2 ZAtHF"H

l
< oY At (HE”HQ + |[F?) +czAtHVEn-1Hw 1B 12 + 0 (el + el 0)
n=1 n=1

2 2 2 2 2 k 2
KO (w2, + aalZg + Il + Iral2o) + CH2 a2,
2 k 2 k 2
0g+1 T Ch? lallo gy1 + Ch*+2 aello i1

OB 75 g1 + ORI g - (5.55)

where the C’s denote constants independent of I, At, h,v. Applying Gronwall’s lemma and (TH2)
o (5.55), the estimate given in (5.11) follows.
|
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Step 2. We show that the induction hypotheses, (IH1) and (I H2), are true.
Verification of (IH1)

Assume that (IH1) holds true for n =1,2,...,1 — 1. By interpolation properties, inverse estimates

and (5.11), we have that
bl < o =+ el

B+ )+ 2

IN

_d
2

IN

ons [ + ch4

K]+ ma

IN

c <|At| W% 4 uh~ 4 B8 s g prteg 4 h’f+1—5> + M.

(5.56)

Note that the expression C <|At| h=% +vh™% + hF=5 4 pm=% 4 patl=% 4 hk+1_g> is independent

of I. Hence, if we set k,m > %,q > % — 1, and choose h, At, v such that

d
1 hs
RE=5 pm=g patl=s < Z Aty < o
2 2 2 < C’ ’]j < C s
then from (5.56)
i, = 2+

Similarly it follows that HT’l‘Hoo <M +6.

Verification of (IH2)

Assume that (IH2) is true for n = 1,2,...,l — 1. Equations (5.11) and (5.55) imply

l
> AL|VE"[§ < C (B 4 B2 4 R 4 AP 4 07)
n=1
Applying the inverse estimate and using the inequality
! ! 3
S an < Vi (z a3> ,
n=1 n=1

from (5.58) we obtain

l 1
STA|VEY,, < ChT: Y At|VE"|
n=1 n=1
I 3
< Chgx/&\ﬁ<ZAtHVE”H2>
n=1

< C (At W8 +uh8 +hF8 s 4 h“lg) ,

where C' = C'V/T is a constant independent of [, h, At, and v. Hence when

d
v, At < h—i,
5C
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(5.57)

(5.58)

(5.59)



and

(IH?2) holds.

Step 3. We derive the error estimates in (5.9) and (5.10).
Proof of the Theorem 5.2.
Using estimates (5.11) and (approximation properties), we have
2 2 2 2 2 2
lle —upllSo + 17 = llco < IENS0 + IS0 + IIFNS0 + IIT115 0
< GAL R )+ C (W2 ull?, oy + 222 7112 )

oco,m+1

Note the restrictions on v from (5.54), (5.57), (5.59), and on At from (3.1), (5.57), (5.59). Hence,
we obtain the stated estimate (5.9).

To establish (5.10), from (5.11), (5.55) we have

IVEIGo + AtlIFullSy < C(T+1)G(ALAY) (5.60)

and
NG +IFlG, < TG(ALR). (5.61)

Hence
Il +IENG, < CGALAY). (5.62)
n

We conclude this analysis with some comments on the sensitivity of the error bounds to the physical
parameters in the modeling equations. From (5.47) we note that the constants Cy, Cy, C3, involve
the terms K2, M? Re, \(= \/2a),A\~!. Thus, in view of the exponential multiplicative factor in
the discrete Gronwall’s lemma, we have that the generic constants C' in (5.9),(5.10),(5.11), depend
exponentially on these terms.
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