Approximation of Time-Dependent, Viscoelastic Fluid Flow:

Crank—Nicolson, Finite Element Approximation*
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Abstract. In this article we analyze a fully discrete approximation to the time dependent viscoelas-
ticity equations with an Oldroyd B constitutive equation in IRd:, d= 2,3. We use a Crank—Nicolson
discretization for the time derivatives. At each time level a linear system of equations is solved.
To resolve the non-linearities we use a three step extrapolation for the prediction of the velocity
and stress at the new time level. The approximation is stabilized by using a discontinuous Galerkin
approximation for the constitutive equation. For the mesh parameter, h, and the temporal step size,
At, sufficiently small and satisfying At < Cchd/ 4 existence of the approximate solution is proven. A

priori error estimates for the approximation in terms of At and h are also derived.
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1 Introduction

The accurate numerical simulations of time dependent viscoelastic flows are important in the ability

to predict flow instabilities in non-Newtonian fluid mechanics. The underlying equations to be
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solved are the conservation of momentum and incompressibilty equations for fluid flow, coupled
with a (hyperbolic) constitutive equation for the viscoelastic component of the stress. To avoid the
introduction of spurious oscillations in the numerical approximation, some stabilization is needed in
the discretization of the constitutive equation. This is commonly done via a discontinuous Galerkin
(DG) approximation for the stress [2],[3],[14], or by using a Streamline Upwind Petrov Galerkin

(SUPG) [7],[16] approximation for the constitutive equation.

In this paper we analyze a Crank-Nicolson, Finite Element Method (FEM) approximation scheme,
and show that it is second order with respect to the time discretization (At). To date the only
proofs of convergence for numerical approximations to time dependent problems in viscoelastic fluid
flow, governed by a differential constitutive model, are given in [3], and [7]. This work extends
the results obtained in [3], and [7]. In [3], Baranger and Wardi studied an implicit Euler time
discretization, with a DG approximation for the stress, and showed that in IR? the approximation of
the velocity and the viscoelastic stress was first order in time, under the condition that At < Ch3/2.
In [7], Ervin and Miles analyzed an implicit Euler time discretization with a SUPG discretization
of the constitutive equation and showed that, in ]Rd,, the method was first order in time under the
weaker condition of At < Ché/2. No estimates for the approximation error for the pressure were
given in [3],[7]. To obtain such an estimate one uses the discrete inf-sup condition together with the
momentum equation. This requires a time differencing of the velocity approximation. For a first
order temporal approximation for the velocity this would give an O(1) estimate for the error in the
pressure. In this paper we are able to show that the Crank-Nicolson FEM approximation scheme

generates a first order temporal approximation for the pressure.

Heywood and Rannacher in [10] studied a Crank—Nicolson approximation for the non-stationary
Navier-Stokes equations. The algorithm they analyzed required the solution of a non-linear system
at each time level. The authors offered two suggestions to avoid having to solve a non-linear system
while maintaining second order accuracy for the time discretization. These were: (i) linearize the
non-linear system about the current approximation, and (ii) linearize the non-linear terms by using
an extrapolation of the current and previous time level approximations (i.e. a two level scheme).
This two level approach was implemented by Mu in [13] for the numerical simulation of the Ginzburg-
Landau model of superconductivity. A comparison of the Crank-Nicolson method with other time

stepping techniques for flow problems is given in [17].



In forming a Crank—Nicolson approximation for viscoelasticity our goal was to have the approxima-
tion determined at each time level by the solution of a single linear system. To do so we use the
extrapolation approach. Linearizing the non-linear system would still have involved the complica-
tion of having the unknown velocity in the computation of the “edge jump contribution” arising
from the DG discretization of the constitutive equation. We were not able to show second order
accuracy in time using a two level discretization scheme. In the analysis the gradient of the veloc-
ity extrapolant is required to be bounded. We could not establish such a bound with a two level
scheme. We therefore propose and analyze a three level scheme. However, the three level scheme
analyzed can be considered a two level scheme for the time averaged variables. In deriving the error
estimates we assume that the solution has the required regularity. For a discussion on the regularity
issues associated with using the Crank-Nicolson discretization for the approximation of initial value

problems we refer the reader to [10].

The paper is organized as follows. In section 2 we briefly describe the viscoelastic modeling equations.
Herein we present the analysis for the Oldroyd B model, however the results can be readily extended
to other differential models. Following the description of the model a variational formulation of the
continuous problem is given. We then prove a perturbation result for the distance between the
solution of the modeling equations and a nearby problem. The finite element approximation scheme
is presented in section 3. The error analysis for the general scheme is then presented in section 4.
Following in the appendix are several estimates used in the analysis of the general scheme, as well

as an analysis of a suitable initialization procedure.

2 The Mathematical Model and the Approximating System

In this section we describe the modeling equations for viscoelastic fluid flow and the finite element

approximation scheme.

2.1 The Mathematical Model

Consider a fluid flowing in a bounded, connected domain 2 € R?. The boundary of €2, 012, is

assumed to be Lipschitz. The vector n represents the outward unit normal to 92. The velocity



vector is denoted by u, pressure by p, total stress by T, and extra stress by 7. The deformation

tensor, D(u), and the vorticity tensor, W (u), are given by
— 1 T _ 1 T
D(w) = o (Vu+ (Vw') . W = ;(Vu - (Vo).

The Oldroyd model can be described using an objective derivative [2],[11] denoted by do /dt, where

do 0o
Frilie E‘FU'VU‘FQQ(U,VU), a€[—1,1]
and
go(o,Vu) = oW(u) — W(u)o — a(D(u)o + oD(u))
1—-a 1+a

= 5 (JVu + (Vu)TJ> - ((Vu)cr + a(Vu)T).

Oldroyd’s model for stress employs a decomposition of the extra stress into two parts: a Newtonian
part and a viscoelastic part. So7 = 7y + 7y. The Newtonian part is given by 7y = 2(1—a)D(u).
The (1—«) represents that part of the total viscosity which is considered Newtonian. Hence a € (0, 1)
represents the proportion of the total viscosity that is considered to be viscoelastic in nature. For
example, if a polymer is immersed within a Newtonian carrier fluid, « is related to the percentage
of polymer in the mix. The constitutive law is [2]

orv

Y _ 2aD(u) = 0, (2.1)

A
TV + ot

where A is the Weissenberg number, which is a dimensionless constant defined as the product of the
relaxation time and a characteristic strain rate [4]. For notational simplicity, the subscript, V, is

dropped, and below 7 will be used to denote the viscoelastic component of the extra stress.

The momentum balance for the fluid is given by

Re (fl‘;) C _Vp 4 V(20— a)D(u) + 1) + f, (2.2)

where Re is the Reynolds number, f the body forces acting on the fluid, and du/dt := du/dt +u-Vu

denotes the material derivative.

In addition to (2.1) and (2.2) we also have the incompressibility condition:

Vu = 0 in Q.



To fully specify the problem, appropriate boundary conditions must also be given. A condition for
the velocity is required on each of the boundaries, and the stress specified on the inflow boundary.
For simplicity, we consider homogeneous Dirichlet condition for velocity. In this case, there is no
inflow boundary, and, thus, no boundary condition is required for stress. Summarizing, the modeling

equations are:

Re(f?;;Jru_vU)+Vp_2(1_a)v.p(u)_v.T — f in Q, (2.3)
rea(G Fu Vb nVe)) 20D = 0 wmo, (24

Veu = 0 in Q, (2.5)

u = 0 on 99, (2.6)

u(0,x) = u(x) inQ, (2.7)

7(0,x) = m(x) ing. (2.8)

In [9], Guillope and Saut proved the following for the “slow-flow” model of (2.3)-(2.8) (i.e. u-Vu
term in (2.3) is ignored):
1. local existence, in time, of a unique, regular solution, and

2. under a small data assumption on f, f’, ug, 79, the global existence (in time) of a unique solution

for u and 7.

In contrast to the Navier—Stokes equations, well-posedness for general models in viscoelasticity is

still not well understood. Results which are known fall into one of three types [15]:

1. for inital value problems, solutions have been shown to exist locally in time,

2. global existence (in time) of solutions if the initial conditions are small perturbations of the

rest state, and

3. for steady-state problems, existence of solutions which are small perturbations of the analogous

Newtonian case.



2.2 The Variational Formulation

In this section, we develop the variational formulation of (2.3)-(2.6). The following notation will be
used. The L2(Q) norm and inner product will be denoted by |-|| and (-, -), respectively. We use H*
to represent the Sobolev space W4, and |||/, denotes the norm in H*. When v(x,t) is defined on

the entire time interval (0,7"), we define
T 1/2
ok = (/0 ||v(-,t)||idt> s loll@) =G0l

The following function spaces are used in the analysis:

[0llcok := sup [lo(, D)k, v
0<t<T

Velocity Space : X := H3(Q) := {u cHY(Q):u=0 on 89} ,
Stress Space : S := {T = (135) : Tij = Tji; Ty € LA(Q);1 < i, < d}
n{r=(ry) 1 u-Vr € 1(Q),vue X},
Pressure Space : @ := L3(Q) = {¢ € L*(Q) : /Qq dx = 0},
Divergence — free Space : Z:={ve X: /ﬂq(V -v)dxr=0,VqeQ}.
The variational formulation of (2.3)-(2.6) proceeds in the usual manner. Taking the inner product

of (2.3), (2.4), and (2.5) with a velocity test function, a stress test function, and a pressure test

function respectively, we obtain

Re(?;+u-Vu,v>—(p,V'V)‘i'(?(l—Oé)D(u)‘i‘Ta D(v)) = (f,v), VveX, (29

(T + A (g:; +u- V7 + g, Vu)) —2aD(u) , a) = 0, Voels, (2.10)
(V-u,q) = 0, VqgeQ.(2.11)
The space Z is the space of weakly divergence free functions. Note that the condition
(V-u,q)=0, Vge @, ue X,
is equivalent in a “distributional” sense to

(u,Vqg) =0, Vge @, ue X, (2.12)

where in (2.12), (-,-) denotes the duality pairing between H ! and H{ functions. In addition, note

that the velocity and pressure spaces, X and @, satisfy the inf-sup condition

inf sup 2.V v) > (>0 (2.13)
€@ vex llall lIvlly
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Since the inf-sup condition (2.13) holds, an equivalent variational formulation to (2.9)-(2.11) is:

Find u e Z, 7 € S satisfying

Re (g? +u- Vu,v) + (21 —a)D(u)+71,D(v)) = (f,v), VveELZ, (2.14)
<T+A(Z+U‘V7‘+ga(7',vu)> 2aD(u),a> = 0, Voebs. (2.15)

We assume that the fluid flow satisfies the following properties:

Iullco s ITlloos IVU|loo, [IVT]leo < M, forallte[0,T]. (2.16)

2.3 Perturbation Estimate

For the error analysis of the Crank-Nicolson time discretization of (2.14),(2.15), given below in
(3.16)-(3.17), it is convenient to compare the approximation with the solution to a nearby problem.
In this section we establish an error estimate between (u,7,p) satisfying (2.3)—-(2.8) and (w,n, )

the solution of a nearby problem — assuming both solutions exist.

Let (w,n,r) denote the solution of

Re(?%—VV-Vw)+Vr—2(1—a)V-D(w)—V-77 = f in Q, (2.17)
0

n+ A ((9;7 +w-Vn + ga(ﬁ,VW)> —2aD(w) = 0 in Q, (2.18)
V-w = 0 in Q, (2.19)
w = 0 on 02, (2.20)
w(0,x) = up(x) inQ, (2.21)
n0,x) = 7o(x) ing, (2.22)

where w = w(w,x,t) € X, and 7 = 7(n,x,t) € S.

Analogous to (2.16) we assume that

[Wlloo s [[nlloc s IVWlloo, [Villeo < M, for all ¢ € [0,T]. (2.23)

Theorem 1 Assume that there exist (u,7,p) € (X,S,Q) satisfying (2.9)-(2.11), and (w,n,r) €
(X,S,Q) satisfying the analogous variational form of (2.17)-(2.22). Then, we have the following



error estimate:

T T
fu—wl* (1) + =l (@) + [ [Da=w)P dt < ¢ [ (Iw=wI? + ]n—l?) dt. (2:24)

Proof: Analogous to (2.14)-(2.15) we have that w,n satisfy

Re (‘ZV +- vW,v> L1 —a)Dw)+1y, D) = (Ev), YveZ  (225)
(n +A (Z?Z + WV + galil, Vw)) — 2aD(w) , a> ) VoeS. (2.26)

Note that
u-Vu—-w-Vw = (u—w)-Vu+w-Viu—-w) + (W—w) -Vw. (2.27)

Similarly,
u-Vr—w-Vyp = (u—w)-Vr+w-V(r—n) + (w—w)Vn, (2.28)

9a(7,VU) = ga(7, VW) = go(T —1,Vu) + ga(n, V(u —w)) + ga(n —7,VW). (2.29)

Letting €, := u—w, €, := 7 —1), subtracting (2.25)-(2.26) from (2.14)-(2.15) and using (2.27)-(2.29)

we have

Re (%?,v) + Re (e, - Vu,v) + Re(w-Ve,,v) + (2(1 —a)D(ey), D(v)) + (€7, D(v))

= (—(w—=—w)-Vw,v), VveZ (230)

(6770) + A <88€;-7 U) + A (Eu -V, U) + A (W - Ver, U) + A (ga(677 Vu)70) +A (Qa(m Vﬁu), U)

—(2aD(ey),0) = —((w—wW)-Vn,0) — A(ga(n—17,VW),0), YoeS. (2.31)

Multiplying (2.30) by 2« and adding to (2.31) we obtain for the choice v = ¢,, 0 = €,
aRe |le,)? + 2aRe (e, -Vu,e,)+ 20 Re(w-Vey,€,) + 4a(1—a)||D(e)])? + |le]?
1
+§)\H67—H? + Aew VT er) + A(W-Ver,e:) + A(ga(er, Vu),e) + A(ga(n, Veu), €r)
= —2a((w—-—wW)-Vw,e,) — (W—=W)-Vn,e;) — A(ga(n —7, VW), e, ) . (2.32)
Note that, using (2.19), we have

(W-Vey,ey) = —(V-wey,6) — (W-Vey,6) = —(W-Vey,6) .



Thus,
(W-Vey,€e,) = 0, (2.33)

and similarly,

(W-Ver,er) = 0. (2.34)
Using (2.33),(2.34), equation (2.32) may be rewritten as
1
aRe lleul; + SAllerlly +4a (1 —a)[D)|* + el
= —2aRe (e,-Vu,e,) — A€y - VT,6r) — AN(galer, Vu),e2) — A(ga(n, Veu), €7)
—2a((w = W) -Vw, &) — (W—W)-Vn, &) = Aga(n =7, VW), e7) . (2.35)
We now bound each of the terms on the right hand side of (2.35).

—2a Re (€, - Vu,e,) < 2aRe |6, - Vu| ||| < 20¢d/R€||VuHOO llewll® - (2.36)

Similarly,

“Aew-V7e) < Mlew- V7| llerll < Ad V7l lleall ller]

Nd Nd
5 IV7]loo lleall® + 5 V7]l llecl® (2.37)

IN

A (ga(er, V), &) < A lgaler, V) flerl| < 4Xd |Vl e (2.38)

~X (9a(n, Veu),&r) < AN [0l IVeull ller] < ex[ID(en)lI” = e[|, (2.39)

7 2
. WG
€1

(using Korn’s lemma)

- 7 ~ ~ 112 " 2 2
—2a((w = W) - Vw,e,) < 20d VWl [w—w| [lea] < lw=w|" + o d® VW], lleall” ,

(2.40)

) ) d?
~((W = W) V,er) < [lw —w|* + ”y IVnl13 llelI* . (2.41)

9



“Mga(n =71, VW), €r) < Xd |l =7l VWl llerll < [l = 7l* + N 4d® [Vw]Z, flel* . (2.42)

Substituting (2.36)-(2.42) into (2.35) we obtain
1
aRe |le + §>\|!6va + (da(1-a) —a) D) + [l
< el (20zd117€\vu||o0 + A V7l + a*d? ||VWH§O>
2 ¢ d 2 7 2
+llelI” | 4Ad [[Vullo + A VTl + 4A7d" [[Vw]i
4 , d?
+ NGk Il + Hwnio)

+2 W= wl* + [ln =7l (2.43)

Applying Gronwall’s lemma, we obtain (2.24).

|
Of particular interest in what follows is the case corresponding to w(x,t), 77(x,t) given by
_ At 1 AL 1 5At
W('at) T W('at - 7) + §W('7t - T) - §W('7t - 7) ) (244)
At 1 3At 1 5At
d i) = nlt—=0) + —n(t—2=0) — Sl t— 20). 2.4
and (-, t) (st =) + 5nt, 5 ) — 3nl 5 ) (2.45)

Corollary 1 For w and 1 defined in (2.44),(2.45) we have that (u,7) and (w,n) given respectively
by (2.14),(2.15), and (2.25),(2.26) satisfy

T T
la=wiP (@) + 7=l (@) + [ IDu-w)?de < c@0* [ (wal? + lll?) de
0 —5At/2

(2.46)

Proof: In view of (2.24), from (A.13) (in the appendix) we have

T i 9 39 s (Tt 2 2
| (=l 4 =) de < 2an® [ (Iwal + el ®) die) e
0 0 t—5At/2

T
@(At)?’ 5 At /
8 2 —5At/2

IN

(Iwuell® + flmuell”) .

10



3 Finite Element Approximation

In this section we formulate a fully discrete finite element method for solving the viscoelastic fluid
flow equations, and prove the solvability of the approximation at each step (for sufficiently small
At, h). To avoid having a non-linear algebraic system for the Crank-Nicolson discretization, the
approximation is a three—level scheme, involving computed approximations at the three previous

time levels.

We begin by describing the finite element approximation framework and listing the approximating
properties and inverse estimates used in the analysis. We assume throughout that the viscoelastic
stress tensors, 7, 1), are continuous. This assumption is consistent with that used in [3] of 7 € H?(Q)

for Q c IR2.

Let Q2 C IRJ(d, = 2,3) be a polygonal domain and let T} be a triangulation of  made of triangles
(in IR?) or tetrahedrons (in IR?). Thus, the computational domain is defined by

Q=JK; KeT,.
We assume that there exist constants c1, ce such that
cih < hg < c2pi

where h is the diameter of triangle (tetrahedral) K, pg is the diameter of the greatest ball (sphere)
included in K, and h = maxger, hix. Let Pi(A) denote the space of polynomials on A of degree no

greater than k. Then we define the finite element spaces as follows.

X, = {veXﬂC(Q)Q:WKePk(K), VKeTh},
Sy = {o€S:o|g € Pnp(K), VK € Tj},
Qn = {peQNCQ):plx € PK), VK €Ty},
Zp = {veXp:(q,Vv)=0,Vq€Qn}.

Analogous to the continuous spaces, we assume that Xj and @}, satisfy the discrete inf-sup condition

inf sup LV V) s g (3.1)

9€Qn veX,, 4]l HVH1

11



We summarize several properties of finite element spaces and Sobolev’s spaces which we will use
in our subsequent analysis. For (w,r) € H k“(Q)‘j x HI1(Q) we have (see [8]) that there exists

(U,P) € Z, x Qp, such that

lw =Ull + h|[V(w =U)]

IN

Crh* w1 (3.2)

lr =Pl < Crh®Irllgsr - (3-3)

Let T € S}, be a P, continuous interpolant of n. For n € Hm“(Q)‘de we have that
ln =TI + RV =T < Crh™nllms - (34)
Let At denote the step size for ¢ so that t, = nAt, n =0,1,2,..., N. For notational convenience,

we denote v" 1= v(-,t,). Also, let

f(tn) - f(tn—l)

n n—1
o= A i +2f (3.6)
fn — fnfl + lfn72 _ lf"*?’ (3 7)
: 5 5 . .

Note that for w, n given by (2.25),(2.26) and U, T by (3.2),(3.4), it follows from (2.23) and inverse
estimates, [5], that
™ oo VU™ oo s 1T loo s VT ™ loo < M~ M . (3-8)

Below, for simplicity, we take M = M.
The following norms are also used in the analysis:

Pp— n
ol =, max (0"

N 3
2
llollo, = [Z HUTLHIcAt] :
n=1

In order to describe the approximation of the constitutive equation by the method of discontinuous
finite elements, following [2], we introduce 0K~ (u) := {z € 0K,u-n < 0}, where 0K is the

boundary of K and n is the outward unit normal and 7+ (u)(z) := lim._,g+ 7(z + eu).

We define

(ol = 3 (o, o= 3 [ W) ot @)emlds (39

KeTy, KeTy,

12



and
(T ha = (5,750 (3.10)
The operator B on X, X S X S}, is defined by
1
B(u,7,0) = (u-Vr7,0), + i(v ur, o) + (1t —=77,0 ) hu - (3.11)
We have on applying Green’s Theorem to (3.11) that
1
B(u,7,0) := —(u-Vo,7), — i(V ‘uo, )+ (17,00 =0 ), (3.12)
which on combining with (3.11) yields some “coercivity” for B
1 2

B(u,7,7) = 5((7Jr — T7>>h’u . (3.13)

Also used in the analysis, for notation convenience, is the operator ¢, defined on X;, x X x X}, by
c(w,u,v) = (w-Vu,v), (3.14)
and A := 2a/\.

As we are assuming “slow flow”, i.e. Re = O(1), we use a conforming finite element method to

discretize the momentum equation.

Initialization of the Approximation Scheme

The approximation scheme described, and analyzed below, is a three level scheme. To initialize
the procedure suitable approximates are required for uj, and 73 for n = 0,1,2. Here we state
our assumptions on these initial approximates. (An initialization procedure is presented in the
appendix.)

lui — w(rAY|* + |7 — n(nAb)|* + At||D(uf — w(nAt))|?
c(Aant + ¢ (h% + RBP4 hzq“)

1
= 3Gi1(Ath), forn=0,1,2. (3.15)

Approximating System

Forn =3,4,...,N, find u} € Zy, 7' € Sy, such that

Re(dpu},v) + Rec(a},u},v) + 2(1—a)(D(u}),D(v)) + (77, D(v)) = (f",v), v Z, (3.16)

1 - - _ - _
X(i’,’f,a) + (dirp,0) + B(up, 7 ,0) — AD(ay),o0) + (9.(7,Vay),0) = 0, o €Sp. (3.17)

13



To ensure computability of the algorithm, we begin by showing that (3.16)-(3.17) is uniquely solvable

for uy and 73 at each time step n. We use the following induction hypothesis.

(IH1) Hug—le,

n—1
T < K.
h Hoo

Lemma 1 Assume (IH1) is true. For a sufficiently small step size At, there exists a unique solution

(up, 7)€ Zy x Sy, satisfying (3.16)-(3.17).

Proof: For notational simplicity, in this proof we drop the subscript A from the variables. Choosing

v =ujp,o = 77, multiplying (3.16) by A and adding to (3.17) we obtain

. R R .
a(u”, 7" u, ") = Af",u") + )\Ki(un_l, " - /\76 c(@™,u" 1 u") — A1 - a)(D(u" ), D(u"))
- lA n—1 nyy i n—1 _n i n—1 _ny _ 1 ~n _n—1 _n
1. 1
bADET), ) = (g7, ), (319)
where the bilinear form a(u, 7;v,0) is defined as:
N A A 1
a(u,7;v,0) = A&(u,") - c(@”;u,v) + A1 —a)(D(u),D(v)) + -~ (7,0)
At 2 2
1 1. 1,
+ E(T,O’) + §B(u T, 0) + i(ga(T ,Vu),0). (3.19)

We now estimate the terms in a(u™, 7;u™, 7). We have
) ) )

le(@", u,u)| = [(@" - Va,u)| < d72 @] [Vl [
< dY2 @ Cr ID)| |lul| , (using Korn’s lemma)
< alD@)® + C”flc’z i,
B ) = Sl —m Wi
[(9a(7", V), 7)< 4[|F" V| [|7"]]

< 4d 2 o IVl
< 4d'2C2K | | D(w)]|
< D] + MdS’%KQ I -

Applying these inequalities to the bilinear form a(-,-; -,-) yields

. 1 dK2C? . Ree €
noon,n oy . k ny2 . 1 2) ny| 2
a(u", 7" u", ") > ARe (t 8, >||u I“ + <)\[(1 ) — 5 ] 5 |ID(u™)||

14



1 1 8dC2 K2 1
+ ( + = - 6’“) =7 + =
2

(1—a) A1—a) (1—a)

Choosing €1 = “557, €2 = 55—, and At < icT K min {% , %6}, it follows that the bilinear form
a(+,-; +,-) is positive. Hence, (3.18) has at most one solution. Since (3.18) is a finite dimensional

linear system, the uniqueness of the solution implies the existence of the solution.

The discrete Gronwall’s lemma plays an important role in the following analysis.

Lemma 2 (Discrete Gronwall’s Lemma) [10] Let At, H, and ay,, by, ¢n, Y , (for integersn > 0),
be nonnegative numbers such that

! ! l
a —l—Athn < AtZ’ynan + Athn + H forl>0.

n=0 n=0 n=0

Suppose that At~y, < 1, for all n, and set o, = (1 — At~v,)~!. Then,

! ! !
a; + Athn < exp (At20n7n> {Athn + H} forl1>0. (3.20)

n=0 n=0 n=0

4 A Priori Error Estimate

In this section we analyze the error between the finite element approximation given by (3.16)-(3.17)

and the true solution. A priori error estimates for the approximation are given in Theorem 2.

Theorem 2 There exists a constant ¢c1 > 0 such that for At < clhd/ 4. the finite element approa-
imation (3.16)-(3.17) is convergent to the solution (u,T) of (2.14)-(2.15) on the interval (0,T) as

At, h — 0. In addition, the approximation (uy, 1) satisfies the following error estimates:

llup —allooo + I = 7lloeo < Fi(AtR), (4.1)
l[on —allgy + 17— 7lloy < C 1+ TY?) Fi(AL,h) + CFy(AD), (4.2)
where
Fi(ALR) = C (B IWllgpur + 2™ Wllopmer + A7 Hlrllogss)
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+C (hk+1 ”WtHO,k+1 + hmH HntHO,m+1>

2
+C (A0 (Iwaello,s + lIwiaellog + s

01 + lInaelloe + lIreello)

T 1/2
+C(Gr(AL )2 + C (At)? ( / (||wttu2 - Hmt\ﬁ) dt) :
—5At/2

Fy(At) = (A1) ([Vuly, + [ Vw

02 t IVu

02 T IVWillgo + [Vl

+ [IVwillgo + Vauellos + IVWuillgo + Vauull, + HVthttHo,z) , (4.3)
and w, n,r satisfy (2.17)-(2.22),(2.44),(2.45), and Gi(At,h), defined in (3.15), represents the
initialization error.

The structure of the proof of Theorem 2 is as follows.

Let U™, T™ denote elements in Zj,, Sy, satisfying (3.2) and (3.4), respectively, and define A, E* T F",

€w, € AS
A" = w" - UY", E" =" —ul, (4.4)
r"=nt-7", F'=7" -1, (4.5)
€w =W" —uyp), e =n"—T1. (4.6)

As introduced above, we use a bar to denote average between levels n and n — 1 and a tilde to

denote extrapolation from levels n — 1, n — 2, and n — 3, i.e.,

A" = %(A" + AT
1

—An—3 _ An—1 _ jAn—2
2A 2A A"

1

AN = Anfl + 7An72 o
2

Step 1. We prove the following lemma.

Lemma 3 Under the induction hypothesis (IH) we have that for 1 =3,4,..., N,

l
2 2 _
HElH + HFZH + S AL[DEY|P < G(ALR) + CGr(ALR), (4.7)
n=3
where
G(At,h) = C (At)* (HthHg,1 + waellg o + Imeellg s + Imeeelli o + HrttHg,o)

2 2 2
O (W2 w2 gy + B 12 gy + B2 IR )

k 2 2
+C (h2 +2 HWt||o,k+1 + hPmr? ”77t”0,m+1) :

16



Step 2. We show that the induction hypothesis, (IH1), is true.

Step 3. We derive the error estimates in (4.1) and (4.2).

Step 1. Proof of Lemma 3: From (2.17)-(2.18), it is clear that the true solution (w,n, ) satisfies

Re(diw",v) 4+ Rec(w",w",v)+2(1—a)(D(W"),D(v))+ (7", D(v))

= (" v)+ (" Y2V - v)+ Ri(v), Vv € Zp, (4.8)
1 ~n =n 3 —n ~n —n
7<77n70) + (dtﬁnﬂf) + B(W 1 70) - )‘<D(W )7 U) + (ga(n 7VW )7U>
A
= Ry(0),Vo €Sy, (4.9)
where
Ri(v) = Re(dw" —wl Y2 v)+ Ree(w", w" — w12 v)
+2(1 = a)(D(W" = w" /%), D(v)) + (7" ="~ /*, D(v)) (4.10)
and
1 — n n— ~n —n n—
Ro(o) = (" =n""Y20) + (di" = 7V, 0) + B0 =" "2 o) (410)
—ADW" = w" %), 0) + (ga(if", V(W™ — w" /%), 0). (4.12)
Subtracting (3.16)-(3.17) from (4.8)-(4.9) we obtain the following equations for €, and e,:
Re (diew,v) + Rec(uy,€y,v)+2(1 —a)(D(€w), D(v)) + (€, D(v))
= (712 ¥ .v) + Ry (V) + Rec(a} —w",w",v), Vv € Z, (4.13)

1 ~n = 3 = ~n =
X(En,a) + (diey,0) + By, €;,0) — A(D(€w),0) + (9a(7}, VEw), 0)

= Ry(0) + B} — W™, 71", 0) + (gu(7 — i, VW"),0), Vo € Sp.  (4.14)

Substituting €, = E" + A", ¢, = F" +TI", v =E", o= F" into (4.13)-(4.14), we obtain

Re (d;E", E") + Rec(j,, E", E") + 2(1 — a)(D(E"), D(E")) + (F", D(E")) =
1
A

(F", F") + (d,F", F") + B(aj,, ", F") — A(D(E"), F") + (ga(7, VE"), F") =
where,
Fi(E") = (r”_1/2, V- E") + Ry (E") + Rec(a} — w",w",E") — Re (d;A", E")

17

F1(E™) (4.15)

Fo(F™) (4.16)



—Re c(ti, A", E") — 2(1 — a)(D(A"), D(E")) — (", D(E")),
Fo(F") = Ro(F")+ By — w", 7", F") + (ga(7 — 7", VW"), F") — %(fnv F") — (4,T",F")
—B(a}, T, F") + A\(D(A"),F") — (g2 (7, VA"),F").
Multiplying (4.15) by A and adding to (4.16) yields the single equation

. _ . o . _ _ 1 - _ _
Rel(d(E",E") + Rehc(&,E",E")+2A(1 - a)(D(E"), D(E")) + 1 (F", ") + (d;F", F")

+ B(a},F", F") + (g.(7', VE"),F") = AF(E") + F(F").

Note that

B E” — En—l E" +En—1 1 9 2

dE" E") = — E" _ En—l

(¢E", E") ( At ’ 2 2AL (H I H H) ’
and similarly,

_ 1 2
n ny __ n|2 n—1
e = o (e e )

Thus we have

e e I R PR S T,
1

S ((F" —F" )iy = —Redc(aj, E", E") — (ga(7}!, VE"), F") + AFy(E")

+ Fo(F"). (4.17)

Multiplying (4.17) by 2At and summing from n = 3,...,] we have

Rel (HE’HQ—HEQ‘D + (HFlH szu)ml_a zm IDEY)|?+ 2 zgm |57
< 2Atz[ Rel c(u, E", E") — (ga(%,y,vE"),F")]+2&At§l:f1(En)
n=3
+ 2At El: Fo(F™). (4.18)
n=3

We now estimate each term on the right hand side of (4.18):

IN

ey, E", E")| (7, - VE", E")]

IN

lag; - VE| £

IA

[yl d/? | VE|| B

IA

Cr. | D(E")|| 25d"2 B
K2dC}
+ €

2
I

IN

e |[D(E™)| |E"

18



|(9a (73, VE"), F"))|

IN

lga (77, VE") [ [[E™]

IN

4|7 | d | VE™ || |F"

IA

Cr | D(E™) || 8Kd [F"|
16K2d2C2 .2
—— L [F"".

e [DEY + —

IN

Thus for the first summation on the right hand side of (4.18) we have

l l
2At Y [~Redc(),E"E") — (ga(7, VE"),F")] < ZAtZ(Re;\el—l—eQ) |D(E™)|?

n=3
2 172
oAt Z ReAdK? Ck &2 2Atz oK Ck [F7|? (4.19)
Next we consider F;(E"). For P" and P"~! elements in Q, satisfying (3.3),
("2 VEY = @ P VR
< |V VEY) (7 - P VBT
< 2B - 2 B
< || dER | (- P dY | VE|
< Ci|| D@2 [ t2 = 4 Oy | DOE V2 |7~ P
c2d 2 Cid 5
< (es+en) [|[DEY|” + k H " 1/2*7“"“ + = |l —P* L (4.20)
4es dey
le(ty, — W™, W™, E")| < [|(4; —w") - V"] [[E"]
< d|IVw" lag - %" B
1, [P
< dM |ag —w"|F 4+ S da B
1 7 =n 2 7 N 2 7 AN 2
< dM B+ dy BT+ dy AT (4.21)
(A" E")[ < [[E"||[|d A"
_ 1
< B A (4.22)
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e(ag, A" E)| < B[ - VA"
< B d2 VAT
< B+ K VAR
(D(A"), DEM)| < [[DA"||[|DE")]

ony |12 1 An|2
< & |D@E" + VAT

”,%
“3
S
=h
=
AN

[ [DEM]

A

o | DEM| + 5 HF"H

For the Ry (E") terms we have:

_ _ 1 2
(o™ = w2 B < B 4w — w2

le(W™, w" —w" V2 EY| = |(W" V(W' —w"?) EY)|
< & vewn - w2 5
<l d? | V(wn — w2 |

< M| w2 4 wd B

(D(w" —w"=Y/%), D(EM)| < HD(vvn—wn-W | IDE™)|
< e IDE)) + o [V —wrt)|
" =" 2 DE)] < e |DE + o 7o

20
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(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)



Combining (4.20)-(4.29) we have the following estimate for F; (E").

MAEY) < [DEP (Mes + e+ 66+ es) + A2(1 = a)(es + 7))

_ ~ - , ~ , ~ 2 /A ,
+ B (3)\R6+ARedM+/\RedM> + HE”H (ARedM)

+ |vAr)? (ARedK2 + 3201 - a)41 ) + ||de A" ( Re) + HA”H (ARedM)

+ ||ven -
+ P (3
+

w1/2)| (AR@M+>\2(1—a)4 >+Hdtw —wp|” ()\Re )

iee) = (555)
7 — PP < C§d> +H n-1/2 _ _nH ( Ck3) ' (4.30)

Next we consider the terms in Fy(F™).

| B(

- w"

", F")

For the first term in (4.31)

<

W) - Vi F|

The second term is handled via

) " F")|

ININ A IA

IN

IN

~n ~ 7 -n n 1 ~1n ~ N\ =N N
(@7 — W) - VA", F)pl + SI(V - (@ —w") 7%, F7)]
HAT =T F ) g —wn |- (4.31)
< @y —w") - vt [[E|
< PV ll@y = w)|E|
< S dPM (g W)+ A [E
< &*2M HE”H2 + M HA”H2 + %d’i"/QM IF° . (4.32)
IV - (g —w") 7" [|E"

d 1" IV - (a7 = %) B

d*PM |V (@ — W) [F|

&M | VER| B+ d2a VAR [jE
&M e || DE™)|| B + &0 || A (B

o @+ farz (14 B 4 oA aso)
€9
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For the third term

(i7" — 77”_7Fn+>h,(ﬁ;;—v*vn)| =0, (4.34)

by the continuity of 7.

[(ga (TR — 7", VW), E™)| < lga(7h — 7", VW) |F"|
< 4d|Vw" | 17— 7" B
< 2dM |7 —i"|]> + 2dM |[F"||
< 2dM B + 4d’MHF"H2 + 4d’MHf"H2 . (4.35)
_ _ 1 _
(@ F)] < B+ 4 T (4.36)
n n on (|2 1 n| 2
|(d, T, F™)| < ||F™|| +Z||dtr 1~ (4.37)

o o 1 o _ _ _
|[B(ag, T F™)| < |(@h - VI, F")| + S[(V - @ T F) [ 4 ([T =T F" )y an]
Each of these terms may be bounded via:

(@7, - VI, F")p

IN

ag; - v |[E

IN

d'? [l oo || VT B

IN

[F7)? + di? | v |? . (4.38)

Lo onoon o -
(V- T FY| < o[ V-ah T |[F7|
NP -
< S| VR [T E
1., 1~ = =
< 5 dGihTH g T E7
S| Y e St L (4.39)
(" — T F" ) an| = 0, (by the continuity of T") . (4.40)
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5
>
=
Hj
<=
A

[ 1D (A™)]]

IN

L 1 AN
B + 5 VAR (4.41)

(90 (77, VA™),E")| < lga(7i, VA™) || |[F"
< Ad||7 o [ VA" [E
< |[F"? + 1642K2 || VA" . (4.42)
Now for the Ry(F™) terms.
’<ﬁn_nn—1/2’]§m)’ < Hﬁn_nn—lﬂHHFnH
_ 1 o2
< B g -t (4.43)
- L) N 1 n n— 2
(o™ = o =2 )] < FP 5 e =2 (4.44)
— 1 n— N N 1 — 1 n— 2
(D" = w2, B < B 4 9w — w2 (4.45)
Next,
(ga (7, V(" = w2 F)] < ga(i, V= w2 [|F7
< 4d)i [V = w2 R
< |[F"? + 164> M? HV(W”—W"_I/2)H2 . (4.46)

Now for B(W", 7" — " /2, F") we have
- 12 - _ _ = 1 g _ =
[BOW" 7" =" V2 EN < (% V=T E ) (VW (), B

(@ =T = (=" ) T F ] (4.47)

For the first term in (4.47)

|(Wn . V('ﬁn - nnfl/Z)yfwn)h‘

IN

15" o 2|0 — 2| [

A

[E7 + dar? [ v — ) (4.48)
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The second term in (4.47) is bounded via

IN

L o 0 i = 1 sl e
IV @ = VAL E] < SV 7= B

1. - _ _ =
< AV [ =2 E
_ 1, a2
< B 4 gl | - (4.49)
For the third term in (4.47) we have
(" = = (=) T F e = 0, (4.50)

by the continuity of 7.
Combining the estimates in (4.31)-(4.50) we obtain the following estimate for F(F").
AE) < [ (d20) + @] e + A7 (@20) + VA7
AP (§ 6+ o - (] eatar)

+|[E)? <d'3/2M+ =M <1 Ck ) +84+2d M+ 25 + ) + HF”H (4d M)

€9

+ |77 ( + d202K2 >+HI‘”H (4d M) + VT |* (d?)

+ ”dtrnH (4) + Hﬁn _ nn71/2H (41)\ n d2 in)

sva - (@) + oo - (5) (451)

Note that

_ 12 1 1
JE)® < SIEP + 5

1 I L I ] L

F"—1H2 , (4.52)

IN

HF"H2 (4.53)

I
with analogous estimates also holding for E™.

With the following choices: €; = 3(1—a)/(18Re), ez = 3A(1—a)/18, €3 = €4 = g = €5 = 3(1—) /18,
€5 = €7 = 3/36, eg = A\(1 — ) /60, substituting (4.19),(4.30),(4.51), and (4.52),(4.53) into (4.18) we

obtain
. 2 2 2 2 “ ! _ o 2 ! — o n2
red (B - [2) + (|F"[F]) + Aa-a) X ae Ip@En)P + 5 3 at 7]
n=3 n=3
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l l
< G AL[EYP + G Y At|[FY?

l l l
+C3 3" At A" + O Y] AL [VA"|? + C5 Y At ||d A"

n=0 n=0 n=3

l l l
T (Co+ Coh2) S AL 4 s Y0 A VI 1 G Y At 4,0

n=0 n=2 n=3

S S S |
n=3

n=3

bon Y At [ — 2+ oy > A [v@ -2
n=3

n=3

+Chy Zl: At |ldin™ — U?_I/QHQ

n=3

! l
—i—CmZAt f”—r"_1/2H2 + ClGZAt ]|r"—73n||2
n=2

n=3

? + ‘F’ ? + HD(Ei)

2 . 2
+017i§ At (HE ) . (4.54)

We now apply the interpolation properties of the approximating spaces to estimate the terms on
the right hand side of (4.54). Using elements of order k for velocity, elements of order m for stress,
and elements of order ¢ for pressure, we have

l l l l
DOALVATP + Y ALVI* < © <h2k D AW [y + R A |n"||3n+1)

n=0 n=2 n=0 n=2

IN

C (P Wl o + 2™ Wl i) (4.55)

! ! l
STALAMP + DAL+ DDA |l - P
n=0 n=0 n=3

l l !
< C <h2k‘+2 SOAE WL+ RPN AL 2, B2y At Hr”!iﬂ>
n=0 n=0 n=3
2 2 2
< C (h2k+2 |HW|”0,I€+1 + p2m+2 |H77H|O,m+1 + h2a+2 |||7~H|07q+1) . (4.56)

l l 2
n2 1/“‘ oA
;gAt |d:A™||? = ;::E;At Al Lo dt

sac () () () () a) o

Ch*h+2 ”Wt||(2),k+1 ) (4.57)

IN

IN
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and similarly,

l
YA < OB 0] s - (4.58)

Using (A.10),(A.11) and (A.12) we have

2
ZAt HV w' | < can! lwallg, (4.59)
2
S At w2 < Oa0* Iwiald (4:60)
n=3
l 9 )
Z At =2 < ot Inli, (4.61)
2
Z AtV - )| < @ Inell (4.62)
2
ZN [ =g =72 < ) naZ (463)
2
Z A 71 2P < ean® frall? - (4.64)

Substituting (4.55)-(4.64) into (4.54) gives the estimate
ReA (HEZH2 _ HE2H2> 4 <HF1H2 _ HFQHQ) +A(1—a) zl: At | DE™|? + ; zl: At B
n=3
< C ZAt IE"|* + C ZAt |F™)?

n=3
+C (At (Ilwaells, + Iwearllg o

2 2
+ Innaellso + lrallyo)
k 2 2 2
C (W YWl gy + B2 Wl gy + B2 12 1)

k
+C (W2 lwill§ ey + B2 ]G )

+OXZ: At (HEz g |F’ g |D(E) 2) , (4.65)

=0

where C' denotes a constant independent of I, At, h. Thus, combining (4.65) with (3.15) and, for

At sufficiently small, applying Gronwall’s lemma to (4.65), estimate (4.7) follows.

Next we verify that the induction hypothesis (IH) holds.
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Step 2. Verification of (IH1)
Assume that (I H) holds true for n = 1,2,...,1 — 1. By interpolation properties, inverse estimates

and (4.7), we have that

IN

N e
o0 oo o0

IN

B+ [, 22
Ch™?

IN

EZH +Cn s

AZH+M

IN

c ((At)2 R 4 phd2 g pmedrz hq““f/?) + M. (4.66)

Note that the expression C' ((At)2 h=% 4 hh—d/2 4 pm—d/2 4 hq+1_d/2) is independent of [. Hence,
if weset k,m > CZ/2, qg> d/2 — 1, and choose h, At such that

pk=d/2 pm-df2_pa+i-djz o %, At < Zj/;, (4.67)
then from (4.66)
|| <M+
Similarly it follows that |[vh| < M +4.
|
Step 3. Proof of the Theorem 2.
We have that
e I e | M ] L e
+3 - n’H2 + 3HF1H2 + 3Hr’H2 . (4.68)

Now, (4.1) follows from (4.68) using Corollary 1, Lemma 3, the approximation properties, and taking

the maximum over [.

To establish (4.2), using (4.1)and (3.15), we have that
N N
S At ;-6 < 30 At fuf—u”? < TFHALR), (4.69)
n=1 n=1

with the same estimate also valid for Y2, At |77 — 77|

To estimate Y25, At [|V(uy —a")|> = X0, At [|D(uy — a™)|%, note that

N N N N
Yo At D@ —an)|® < 33 At D@ - w)|? + 33 At DAY + 3 At [|[DED)|
n=1 n=3 n=3 n=3
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2
+ > At ||D(uy —am)|* . (4.70)

n=1

The second, third, and fourth terms on the right hand side of (4.70) can be bounded using the
interpolation properties, Lemma 3, and the initialization assumption (3.15), respectively. To bound

the first term we proceed as follows. For simplicity, we assume N is even.

al —n —n\ |12 al At n ny |12 n—1 n—1 2
> Atp@ —whF < 3 T (1D = whP + || D - wh |
(N—2)/2
3 24t i NE i i+14]|?
< 3 Z 5 (HD(u2 —w?) +4HD(u2+1—w2+1)H
i=1
. . 2
+ HD(u2z+2 _W21+2)H >
using Simpson’s rule,
3 ([ 2 7 g [N 2
< ([T D w) e+ ot [ D@ = W)l d
2 to 72 to
using (2.46),
e 2 2 7 4 [ 2
< c@ot [ (Iwal + nal?) dt + @01 [T (190 =w)l
—5At/2 48 ts

+4[ V(= w4 6]V = w)ul” + 4]V = W)l + [V W) dt
T
< oyt (/ (well® + llmeel?) dt) + CF3(At), (4.71)
—5AL/2
where Fa(At) is defined in (4.3).

The stated result, (4.2), now follows.

We are now in a position to consider the error estimate for the pressure. Similar to (2.9) the

approximation for the pressure p} satisfies the equation
Re(dyufl,v) + Rec(if, uf,v) + 2(1 - a)(D(a}),D(v)) — (5}, V-v) + (7. D(v))

= (f",v), for all v € X} (4.72)

Corollary 2 With the hypotheses of Theorem 2, we have that

1/2
(35 (=il + ot =splf) )" (5 - o)
n=1

n=1

< C(1 + TY?) Fi(At,h) + CFy(At
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+C (A1 (Ilelloo + V0l o + lI7iello) (4.73)
N ) 1/2
(Z =72 = 5| At) < C(A)T'TYV2 Fy(At,h) + C (1 + TY?) Fi(At,h) + CFy(At)
n=1
+C (At)? (HuttHo,o + [[Vugellg g + ”TttHO,O)
+C (A0 (I[wrllo + pulloo + fillo)

+C (hq“ lpllo gen + 27 (A0)2 || )
q+1
1/2

+C (At)? ( /_ ;t e |2 dt) . (4.74)

Proof of Corollary 2:
The estimate (4.73) follows from (4.2), the triangle inequality and (A.10),(A.12).

To estimate the error in the pressure, let P € @5, be such that

lp =PIl < CrhA™pllg+1 - (4.75)

From the discrete inf-sup condition (3.1), and using (A.10), we have

s - 1 (P — by, V - V)|
P"—ppl| < 4 sup
1P =7l < G s =,
n—1/2 _ pn . 1 n—1/2 _ -n .
< 1 sup (p P,V - v)| + 1w (p P, V- V)|
B vex, Ivlly B vex, Ivlly
1. _ _ L5 1 ("2 = pp, V- v)|
< *dl/Q pn 1/2 _pn + pn _pn + = sup h>
< 5 [+ 0 =) + 5 e T,
C / . , 1/2
i) 3/2 q+1 n n—1
< A7 ( / Ipe dt) + h (np lgsr + Hqﬂ)
1 n—1/2 _ =n .
+ L |(p P, V)| (4.76)
/BVGX]—L ||V||1
Subtracting (4.72) from (2.9)implies
(132 _pn71/27v : V) = (fnil/Q - f”)v) — Re (uﬁil/Q - dtunvv) — Re (dt(un - UZ),V)

—Rec(u" Y2 —a", u" Y2 v) — Rec(@” —al,u" /2 v) — Rec(al,u"" /% —a},v)
—2(1—a)(D" 2 —u}), D(v)) - ("2 = 7, D(v)).
Hence,

’(pnil/Z — ﬁ;zl? V- V)’

vl

IA

|72 = ||+ Re [y ™2 = dut|| + Re [ldi(u” — up)|
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T Red?M Hu"*/? _—

|+ Red? M |a" - ap|

+ (2Kd' 20y + 20— ) | D@2 —ag | + |72 - A (a7)

All the terms on the right hand side of (4.77) may be bounded in a similar manner as:

i . 1/2
|2 — 1| < can ( / 16l dt) , using (A.10), (4.78)
n—1
. 1/2
Hu?_l/2 —du™|| < C(A1)3? (/ (g || dt> , using (A.11), (4.79)
th—1
tn—1/2 2 1/2
Hun—l/Z —a| < O (AP (/ [l dt) , using (A.13), (4.80)
n—3
|@" — @} < 2F;(At,h), using (4.1), (4.81)
(w —up) — (-
[di(u" —up)|| = H H

A < 2(At)"'Fi(At, h), using (4.1)(4.82)

e I ] e T L Bl Lt

combining the estimates from (4.76)-(4.82), and using (4.73), the stated result (4.74) now follows.

|
Note that the estimate for the pressure is only first order with respect to the time discretization.

In concluding we again remark that the estimates in Theorem 2 and Corollary 2 are derived under
the assumption that the solution to the continuous problem has the necessary regularity. For a

discussion of the regularity assumption for the Navier-Stokes equations see [10].

A Appendix

On repeated integration by parts we have the following representations:
tn
u = u(t,) = u*? +/ w(-,t) dt
th—1/2
AN A tn
w2 2oty / (-, 1) (tn — t) dt (A.1)
2 tn—1/2
At 1(At)? - 1 [tn
w2 2oy fuu?t 24 7/ () (b — )% dt . (A.2)
2 2 4 2 )ty 1)
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Also

tn
u' = u" 4 Atul T 4 Wi (-, 1) (t, — t) dt (A.3)

tn—1

For u” !,u”=2 and u” 3 we have

AN tn—1/
'l = ut, ) = u”71/2—7ut 1/2+/ 1 2utt('7t) (t —tn—1)dt (A4)
tn—1
At 1(At)? 1 [tn-1/
wtz o Bhypee LB o LR = 2, (A5)
2 2 4 2 th—1
At o, tp—1/
w2 = u(tns) = u”_1/2—%ut 1/2+/ Y (o) (t = too) dt (A.6)
tn—Q
tn—1
T = u”_l—Atu?_1+/ ugy(-,t) (t —th—2)dt, (A7)
tn—2
At tn—1/
W = ) = w2 [T 0 - ) (A58)
tn—3
tn—1
"l = ul - 2Atu T 4 (1) (t —ty_3)dt . (A.9)
tn—3

Lemma 4

o — w2 < 4%(&)3 /tt"luuttnz dt . (A.10)

n—

Proof of Lemma 4:

2 1
Hﬁn_un—l/QH _ H2(un+un—1)_un—1/2
2

1 tn ln—1/2

_ f/ l/ W, 8) (tn — ) dt + utt(-,t)(t—tnl)dt] dx
4 Jo ln—1/2 tn—1
1 tn 2 tn—1/2 2

< 7/ 9 / Wi ) (tn— ) dt | + / Wi 6) (= tn_1)dt ) | dx
4 Jo th—1/2 tn—1
1 tn ) tn

< 7/ / ) dt/ (tn — 1)2 dt
2 Q tn—1/2 tn—1/2

tn—l/Q tn—1/2

+ (wge(-,))? dt /

tn71 tnfl

1 1 At 3 tn 2 1 At 3 tn—l/Q 9
= [ |2 (= SNPdt + - (= L) dt| d
2/9 ls ( 2 ) /tnl/z (£ dE + 3 ( 2 ) /tnl ()" df| dx

_ 418(At)3/ﬂ/t:: (e (- )2 dt dx

(t—tn_1)? dt] dx
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1 tn
= —At3/ uyl|? dt.
48( ) N [[u|

Lemma 5
Hdtu” —u) 1/2H At)? /t" (RS
tn—1
Proof of Lemma 5:
e e N e e |

IN

b o
+/ Y (g ()2 dt/ I/Q(t—tn_l)‘ldt] dx

tn—1 tn—1

1 \? 1 /At\? [te 9 1
= 2(— (= S)rdt + -
2(4At> /Ql5<2) /n 1/2(uttt(7)) T3
= 2 dtd
2808 //tn , (e *

1 tn
= — (At / 2 dt.
1280( ) - [

For the vector u, u®, i=1,... ai, denotes the ith component of the vector.

Lemma 6

v - w1z < <48 /tt Vg dt.

Proof of Lemma 6:

tn—1

At

(

2

:

(A.11)

)2/9 th W (- 1) (tn — )2 dt + /t”_l/2 ws (-, 1) (t—tnl)thrdx
tn_1/2 tho1

y >2/Q2 K/t:nl/2 Wi (1) (tn—t)2dt>2 + (/tim Wi (1) (t—tn_l)th>T dx
() | [ // (e 1))? /:mun —

/tnl/2 (upe(-,1))? dt

th—1

(A.12)

) n—1/2 2 1 tn tn—1/2
[v@ —w2)| = Z/QV /t W t) (b — t)dt + Wy 0) ( — tu_y) dt
n—1/2

tn—1
tn—1/2

tTL
: v{/ Wil 1) (bn — ) dt +
tn—1/2

tn—1
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interchanging differentiation and integration

- 411/9 {/tn vutt("t) (t" - t) dt + A vutt(’at) (t - tn—l) dt}

tn71/2 th—1

tn ln—1/2
: {/ V() (b — 1) dt +

tn71/2 th—1

Vutt(-, t) (t - tn—l) dt} dx

zd: 2
1 tn 7 tn71/2 i

N 7/ / uttmj("t) (tn _t) dt + / uttacj('at) (t _tnfl)dt dx
4 @ tn—1

d 1 [ tn . 2 tp—1/2 . 2
3 7/ 2 / W () (tn—t)dt] + / W (46) (t—tor)dt ] | dx
4 Q tn71/2 J tn—1 !

i,j=1 tn—1/2
<
ij=1
d’ -
1 tn . 2 tn
< ¥ 1/2 / (u;txj(.,t)) dt/ (t, — )% dt
i,j=1 Q |Jtnoaye ln—1/2

tn—l/? . 2 t"—l/Q
+/t (W, (1)) dt/ (t —tn_1)? dt
n—1

tn—1

d 3
1 1 /At n X 2
= Y e (2 i (1) dt d
5 4/{2 3 ( 2) ~/tn (uttxj(a )) X

-1

(ﬁt)?) /tn 9
= — Vu dt .

Lemma 7

Hﬁn - un_1/2H2 - %Q(At)g /tn_l/2 [ | dt .

n—3

Proof of Lemma 7:

~n n—1/2 2 n—1 1 n—2 1 n—3 n—1/2 2
u” —u H = ’(u +ou" - gu )—u

tn—1

]dx

(A.13)

ln—1/2 1 [ta-1/2
- / / W 8) (= to1) dt + f/ W 8) (£ — tn ) dt
Q 2 tn—2

1 [ta—1/2 2
- = utt(-, t) (t — tn_g) dt dx

INA
S~
w
—
/N
—
3 ~

3
- L
~
N
s
<

-

~

N—

—
~

|
~
7
_

N—
QL
F

~_
N
+
| =
N
—
3 S
| 3
N |
-
~
V]
s

&

—

“@0-

N—

~—~
~

|
~

7

o

S~—
I
S

~_
N

2
1 tn—1/2
+</ w (-, 1) (t—tng)dt> dx
4 tn73
tn—1/2 n—1/2
< 3 / (g 1)) dt/ (t— tn_1)? dt
Q tn—1 tn—1



1 [ta—1/2 tn—1/2
+ 5 (uy (-, 1))* dt / (t — tn_o)?dt
tn—2 tn—2
1 [tn-1/2 9 ln—1/2 9
+ = (ag (-, 1)) dt / (t —ty—3)°dt| dx
4 tn—3 tn—3

1 (A3 [tn1/2 9 1 /3At\3 [tn-1/2 9
= (= S)Par + — (2= L) at
3/9[3(2) [ e+ 5 (550) [ a0
1 (BAL\? [tn-1/2 9
— | — 1) dt| d
+12<2>/m ) ] s

n— 1/2
At / / utt ) dt dx
tn—3
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- 8<At> L7 a.
tn—3

IN

|
Lemma 8
B 1 2 1 tn—2 2
Hu"—u” H < fAt/ lag||” dt . (A.14)
4 tn—3
Proof of Lemma 8:
Hﬁn _ un—1H2 — H <un—1 + lun—2 _ 1un—3> _ un—l 2 — Hl(un—Q _ un—3) 2
2 2 2
tn 2 2
= Tw(-,t)dt| dx
4/ /tn 3 t )
tn 2 tn—2
< / / 1 dt / (wy(-£)? dt | dx
4 TL 3 TL 3
= s [ P
tn—3
]

B Appendix B

In this section we give an example of an initialization procedure for the Crank-Nicolson approxima-
tion described in (3.16),(3.17). There are three steps to the procedure:

Step 1. Apply a single step implicit Euler approximation to approximate u,%, T}%, (i.e. z%, 0}21)
Step 2. Apply a single step Crank-Nicolson approximation to compute u,%, 7']3 .

Step3. Interpolate to determine u}L, 7',% .
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We introduce the following notation:

f(tn) = f(tn—2)

dof = N (B.1)
. n n—2
o= % (B.2)
By(u,7,0) = (u-Vr,0o), + (77 =77 ,0 )hu - (B.3)

Similar to (3.13) for B(u, 7, 7), we have

1 1
BZ(uvT7T) = _§(V'UT’7—)h + §<<7—+ _T_>>%L,u . (B4)
For the initial data we take u) = 4°, 72 = 7° which implies that |E°|| = ||[F°|| = 0.

Initialization

Step 1. Forz) =, 0) =17, find z2 € Zp,, 03 € Sy, such that

Re(dyzi,v) + Rec(ul,z},v) + 2(1—a)(D(z2),D(v)) + (2,D(v)) = (f%,v), v € Z;, (B.5)
%(0%,0) + (dy0?,0) + B(u),0?.0) — N(D(22),0) + (ga(7),V2z2),0) = 0, 0 €S}, .(B.6)

Step 2. Forz} = (23 +29)/2, 0} = (07 + 0%)/2, find u} € Zy, 77 € Sy, such that

Re(dyui,v) + Rec(zi,u7,v) + 2(1 —a)(D(2),D(v)) + (#,D(v)) = (f',v), v € Z,(B.7)
L .o

X(Th,a) + (dgtrﬁ,a) + BQ(Z%,%,%,U) — S\(D(ﬁ%),a) + (ga(ﬁ}l,Vz%),a) = 0, 0 € Sp(B.8)

Step 3. uj, = (uj +u})/2, 0, = (6 +6;)/2 .

For the error in Step 1 of the initialization we have:

Lemma 9 For z3, 07 given by (B.5),(B.6)and w, 1 satisfying (2.25),(2.26) we have that
2 2 2 2 1
|72 = wean|” + |67 - nean|” < &atn), (B.9)

where,

EN(ALR) = CAt<h2kHW0H2 e

o
k+1

m+1 q+1
v @0* (el + owel + " + ol + o6])

e s T e T (B.10)

k+1 m+1
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Proof: Proceeding in a analogous fashion to above (see also [7]) with
E? .=U" — z}, F, :=7" -6y,
and noting that
z) =u) =U", ) =7 =7° and D(E?) =0,
we obtain
rA[E2" + R + arka - o) D@2 + At% e
< 1At B ‘2 + CoAAt HFiH2

coust (o« [« o) + cunefasse

st (e + 2 + [9r2) + cont far?|

Oy AL < ’WO _ V~V2H2 N HV(WO _ V~V2)H2 + Hno - 772H2>
+Cg At < ‘thWQ - Wt2H2 + Hd2t772 N 77t2H2>
4Oy A HTQ _PQHQ ' (B.11)

Using z; — w(2At) = E2 + A2, 02 — n(2At) = F2 + T'?, and the approximation properties, the

stated result follows.

|
Next we estimate the error in u%, T,% generated in Step 2.
Note in this step a modified B operator, By is used. We have that
(V-zhm) < ||Vezhr| I
1 2
< d||vai|| 7l
< deh™ ||| )
o0
< dCrKh ™))% .
Therefore, from (B.4),
1. _ 1 _
By(ah,my7) 2> —3dCrER 7P + Sl = D (B.12)
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Lemma 10 For ui, 77 given by (B.7),(B.8), w, n satisfying (2.25),(2.26), and E?, F? defined in

(4.4),(4.5), we have that
S e e ey

where,

Ex(ALD) = CAt(hQ’“HwOHQ +h2mH770H2

o
k+1

m+1 q+1

R0 Gl W AR U

eKCO (e e L T e v

(B.13)

#C @7 (o + ok + v+ o]+ pe]) - 10

Proof: Proceeding in an analogous fashion to the general case with the Bs(z}, F2, FQ) term on the

left hand side of the equation bounded using (B.12), we obtain

4At 1
A2
< cof] + cuse|e

ReXHE2H2 + <1+

+ Oyt (!AO\f T [va?” + a2 + Hw\f) + Curtdn?|’

+C5AL (’rOHQ + HVFOH2 + Hﬂ? + Hvr2H2) + CgAtHdgtF2H2

sl o)

Y ey T S

I A e

To estimate ||z}, — v?/IH2 ( analogously, |0}, — ﬁle), we have

2 2
J=h =] < 2

1 2 1
z) — i(wO +wh| +2 HQ(WO +w?) — w!

Now,

2
1

1
2 Zh — i(wo +W2)

IN

2 2
J#h ="+ [~ w7

IN

HAOH2 + EXALA).
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2
,using wl = w(-, At/2) +w(-, —At/2)/2 — w(-, —3At/2)/2 and expanding
about ¢t = At we have that

For H%(WO +w?) — wi

2 2At

1
H(W0 + W2) —w!

. Iwall? dt < ¢ (a0 |wi] . (B.18)

< C(AD? /

—5AL/2

Estimates for | V(w2 —wh)||?, |2 = n*||°, [|[ V(72 = nY)||” follow as in (A.10),(A.12), and ||dorw? — wi||®
| don? — ntlHQ from (A.11).

)

The terms HthAQHQ, HdgtFQH2 are estimated as in (4.57).

On combining the above with the approximation properties, estimate (B.13) follows.
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