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Abstract. In this article we analyse a fully discrete approximation to the time dependent vis-
coelasticity equations allowing for multicomponent fluid flow. The Oldroyd B constitutive equation
is used to model the viscoelastic stress. For the discretization, time derivatives are replaced by back-
ward difference quotients, and the non-linear terms are linearized by lagging appropriate factors.
The modeling equations for the individual fluids are combined into a single system of equations
using a continuum surface model. The numerical approximation is stabilized by using a SUPG
approximation for the constitutive equation. Under a small data assumption on the true solution,
existence of the approximate solution is proven. A priori error estimates for the approximation in
terms of the mesh parameter h, the time discretization parameter At, and the SUPG coefficient v
are also derived. Numerical simulations of viscoelastic fluid flow involving two immiscible fluids are
also presented.
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1 Introduction

Presented in this paper is an error analysis for a fully discrete approximation to a time dependent,
multicomponent, viscoelastic fluid flow problem. In [3] and [11], results are given for a fully discrete
approximation to the flow of a single viscoelastic fluid. This paper extends these results to include
flows which involve more than one fluid. Our motivation for considering multicomponent viscoelastic
fluid flow arises from its application in material science, where new materials with novel properties
are being developed by mixing several viscoelastic fluids [24].

For the governing equations of multicomponent viscoelastic fluid flow, we have that within each
fluid component the viscoelastic equations must hold. In addition, along the interfaces separating
components, a free-surface boundary condition must be satisfied. This boundary condition accounts
for the discontinuity in the stress tensor across the interface between components and, in part,
determines the shape of the interface. Using a continuum surface force model (CSF) [6], we replace
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the interfacial surface with an interfacial region in which we use a continuous interpolate to describe
the fluid characteristics. The width of the interfacial region is determined a priori. The width is
fixed and independent of the computational mesh. The CSF approach enables us to model and
analyse the multicomponent fluid problem as a single fluid with varying material parameters.

In viscoelasticity, under a “slow flow” assumption, the non-linearity in the momentum equation is
often neglected. For an Oldroyd B type fluid, the stress is defined by a differential constitutive
equation. The difficulity in performing accurate numerical computations arises from the hyperbolic
character of the constitutive equation. Care must be used in discretizing the constitutive equation
to avoid the introduction of spurious oscillations into the approximation.

The first error analysis for the steady-state finite element approximation of viscoelastic fluid flow
was presented by Baranger and Sandri [2]. In this paper a discontinuous finite element formulation
was used for the discretization of the constitutive equation, with the approximation for the stress
being discontinuous. Motivated by implementation considereation, Najib and Sandri in [17] modi-
fied the discretization in [2] to obtain a decoupled system of two equations, showed the algorithm
was convergent, and gave error estimates. In [20], Sandri presented an analysis of a finite element
approximation to this problem wherein the constitutive equation was discretized using a Stream-
line Upwind Petrov Galerkin (SUPG) method. For the constitutive equation discretized using the
method of characteristics, Baranger and Machmoum in [1] analysed this approach and gave error
estimates for the approximations.

In the analyses described above for steady—state viscoelastic flow there are three main steps: (i) the
definition of a iteration operator, (ii) showing that the iteration operator is well defined, and (iii)
applying Brouwer’s fixed point theorem.

For the fully discrete approximation to the time dependent, multicomponent problem case presented
herein, the analysis is completely different from the aformentioned method. Instead it follows closely
the method of [11]. Time derivatives are replaced by backward difference quotients, and the non—
linear terms are linearized by lagging appropriate factors. A key part in the error analysis is an
induction argument on properties of the approximation. The approach follows that of Liu [15] for
compressible Navier-Stokes equations. For completeness we present the analysis with the non-linear
term in the momentum equation included.

This paper is organized as follows. In Section 2, the general equations which govern the flow of
multicomponent behavior are discussed, and the continuum surface force model is presented. In
Section 2 we describe the equations for viscoelastic fluid flow and present the numerical approxi-
mation scheme. The main approximation result is then given in Theorem 4.1 in Section 4, followed
by its proof. In Section 5 we present a numerical simulation of viscoelastic fluid flow involving two
immiscible fluids. The experimental convergence rates for the error in the numerical simulation
agree with the theoretical rates established in Section 4.

2 The Modeling Equations of Multicomponent Fluid Flow

In this section, we briefly present the modeling equations describing multicomponent, viscoelastic
fluid flow. We use u, p, and T to denote the velocity, density, and total stress (tensor) of the fluid.

Let © denote a bounded domain in %< (d = 2,3), with boundary 0f2. For ease of exposition, we will



present the formulation for two viscoelastic fluids in €. Let €1, Q9 denote the region in 2 occupied
by fluids 1 and 2, respectively, and Z, the interface between the two fluids. Note that Q1,9 and 7
are functions of time, and Q2 = Q; UQy UZ.

Within each €;:

For V' a fixed region in €2;, with boundary 0V, the conservation of momentum and mass equations
imply

d
—/pudx = /bdx+/ T -ndS— pu(u-n) ds, (2.1)
dt Jv Vv v v

d
—/ pdx = — pu-nds, (2.2)
dt Jv )%

where n denotes the unit outward normal on 9V, and b the body forces acting on V.

Along the Interface 7:

The boundary condition which holds along, and determines the interface Z is [4]
[T -n]=—0kn— Vo, (2.3)

where k denotes the mean curvature of Z, o the coefficient of interfacial tension, Vo the surface
gradient of ¢, n the unit normal on Z pointing into fluid 2, and [T - n] the jump of the normal
component of stress across Z defined by

[T : n”x = lim (T|x+en - T’x—en) :

e—0t

Using the continuum surface force model of Brackbill et. al. [6], the force along the interface is
rewritten as a volume force using a delta distribution, i.e.

/VHI[T-n] s = /V[T-n]5(X—Xs)
= /V(—Umn—vsa)é(x—xs) dx

where x,; denotes a nearest point to x on Z.

Using the divergence theorem to replace the surface integrals in (2.1), (2.2) with volume integrals,
the fact that V' is an arbitrary volume, and the incompressibility of the fluid, we obtain the following
pointwise equations for the conservation of momentum and mass:

du

Por +pu-Vu = b+V-T—(0kn+ Vso)dz, in(, (2.4)

V-u = 0 in Q. (2.5)

Modeling Equation for the Stress Tensor T:

The stress tensor T is written in the form

T=-pl+7 (2.6)



where p denotes the internal fluid pressure, I the identity tensor, and 7 the extra stress tensor. For
a Newtonian fluid 7 is modeled as

T =2nD(u) (2.7)

where D(u) := 2(Vu+ Vu®) is the deformation tensor and 7 is the fluid viscosity. For viscoelastic
fluids, because of the internal elasticity of the fluid, the modeling equation for the extra stress is in
general considerably more complicated than (2.7), (see [5] for a description of various models).

In this paper we assume that the extra stress is governed by an Oldroyd B model. For this model
T is expressed as

T =T+ Ty (2.8)
where the Newtonian contribution to the extra stress, 7, satisfies
Tn = 2(1 — a)D(u), (2.9)

and the viscoelastic contribution 7, is given by

422" _oan@) =0, (2.10)
ot
where )
0Ty 0Ty
5 = g T V7y + go(1p, VU, a€[-1,1] (2.11)
and
l1—-a T 1+a T
galo, V) = (roVu+ (Vu)’r,) - (Va)r + 7(Vw)T) . (2.12)

In (29), « € (0,1) may be interpreted as the proportion of the viscosity which is considered
to be viscoelastic in nature. The Weissenberg number, A, is a dimensionless constant which is
defined as the product of the relaxation time and a characteristic strain rate [5]. In (2.11) the
choices a = 1,—1,0 correspond to the upper, lower, and corrotational convected derivatives of 7,
respectively.

In what follows, for ease of notation, we use 7 to denote 7,. Using (2.6), (2.8)-(2.11) and (2.4), (2.5)
we obtain, on nondimensionalization of the problem, the modeling system of equations:

Re(%‘:+u.w)+vp_2(1_a)v.p(u)_v-7 . in Q, (2.13)
A (g; Fu- VT 4 galr Vu)) —2aD(u) = 0 in Q, (2.14)
Vou = 0 in Q, (2.15)
where
f := b— (0kn+ V0)ir, (2.16)
Re — L;/p, (2.17)



In (2.16), 67 is a C® approximation to the dirac delta, 6. The approximation is centered along the
interface with a fixed width. More regarding the implementation of this approximation is given in
the next subsection. In (2.17), L, V, p, 77 denote a characteristic length scale, velocity scale, density,
and viscosity.

To fully specify the problem, together with (2.13)-(2.15), we requre initial conditions for the velocity
and stress, boundary conditions for the velocity, and the stress specified on the inflow boundary of
Qa agina

u(x,0) = up(x) in Q, (2.18)
7(x,0) = 70(x) in Q. (2.19)
U = Upgy on 012, (2.20)
T = Thdy on 0. (2.21)

Note: Equations (2.13)-(2.15), (2.18)-(2.21) only specify the pressure p up to an arbitrary constant.

The existence and uniqueness of (u, 7, p) satisfying (2.13)-(2.15), (2.18)-(2.21) is still largely an open
research question. The local existence (in time), and under a “small data” assumption on f, £/, ug, 79,
global existence (in time) of solutions to (2.13)-(2.15), (2.18)-(2.21) have been established [13]. For
a more complete discussion of existence and uniqueness issues, see [19].

In order to simplify the numerical analysis of the approximation scheme to (2.13)-(2.15), (2.18)-
(2.21), we will assume homogeneous boundary conditions for the velocity (i.e. upgy = 0). Conse-
quently, as there is no inflow boundary, below we study the specific system of equations (2.13)-(2.15),
(2.18)-(2.20) with upqy = 0.

2.1 Interfacial Tension Forces

There are a number of methods for tracking an interface. These methods can be broadly classified
as front tracking [23], or front capturing methods [12, 21, 22]. We use a front capturing method
commonly referred to as the level set method.

An equation describing the movement of the interface is the advection equation:

oC
— + V- (uC) =0, (2.22)
ot
where C is called the “color” function. The color function is an indicator function with respect to
the fluids in the flow field. For a two fluid mixture the color function has a value of 1 in fluid 1 and

a value of —1 in fluid 2.

The level set method was first introduced and developed by Osher and Sethian in the late 1980’s (see
[18]). For the level set method a distance function, ¢(x,t), is used as the color function. Distance
to the interface is taken to be positive within fluid 1 and negative within fluid 2. Thus, the interface
is given by ¢(x,t) = 0, i.e. the zero-level curve of ¢(xt).

To obtain a pointwise equation for the conservation of momentum we reformulate the interfacial
tension forces, which are surface forces, as volume forces using the continuum surface force approach
of Brackbill et. al. [6]. In this approach the interfacial surface is replaced by an interfacial region.



The color function C(z,t) is modified so as to change continuously from 1 (the color value in
fluid 1) to —1 (the color value in fluid 2). The modified color function is denoted C. Using this
modification, the two-component fluid system may be considered as a single fluid with continuous
(nonconstant) fluid parameters. The interfacial force may be represented by a local volume force,
F,,, by multiplying by a d distribution centered at the interface. In [6] Brackbill et. al. showed that

C
lim cm(x)V (z) dv = / okn dS (2.23)
e—0 Jy [C] T
where C is a mollified version of C, [C] = Cy — C1, € is the half-width of the interfacial region. In
_ VC()
le@]

addition, the normal is approximated by n(z)

Several analogs of (2.23) have been developed. We have extended a formulation derived by Chang
in [8] to allow for a spatially varying coefficient of interfacial tension, o. For the level set function
denoted by ¢ we have:
Lemma 1 [16] The interfacial tension forces may be expressed as
/ (okn + V,0) dS = / (kY6 + Vy0) 6(¢) AV (2.24)
T 1%

where § is the dirac delta. [ ]

Using (2.24) the conservation of momentum can be expressed as
d
7/ pu dV :/ pb dV +/ vV.T dV+/ (kY + Vo) () dV. (2.25)
dt Jv 1% 1% v

In the numerical implementation, ¢ is replaced by and approximation ) given by

1 .
< ) s(I+cos(mz/e)) /e if |z| <e,
or(z) = { 0 otherwise

where € is half the interfacial width. The curvature k(z) is approximated using
Vo

ﬁzi’ Iﬂ}%—vn

V¢

where ¢ is a smoothed version of ¢.

3 The Variational Formulation

In this section, we develop the variational formulation of (2.13)-(2.15), (2.18)-(2.20). The following
notation will be used. The L?(Q2) norm and inner product will be denoted by |[|-|| and (-, -). Likewise,
the LP() norms and the Sobolev W*P(Q) norms are denoted by ||-||;, and [ - TESPectively. HF



is used to represent the Sobelev space W*?2, and |||, denotes the norm in H*. The following
function spaces are used in the analysis:

Velocity Space : X := H}(Q) := {u €EHY(Q):u=0 on 8(2},
Stress Space : S := {T = (135) : Tij = Tji; Ty € LA(Q);1 < i,5 < 3}
n{r=(ry):u-Vr € L(Q),vue X},
Pressure Space : @ := L3(Q) = {¢ € L*(Q) : /Qq dx = 0},
Divergence — free Space : Z:={ve X: /Qq(v ‘v)dxr=0,VqeQ}.

The variational formulation of (2.13)-(2.15), (2.18)-(2.20) proceeds in the usual manner. Taking the
inner product of (2.13), (2.14), and (2.15) with a velocity test function, a stress test function, and
a pressure test function respectively, we obtain

(Regl: + Reu- Vu,v) — V- -v)+2(1-a)Du)+7,D(v)) = (fv), VvelX, (3.1)

(7’ + ()\g:; + Au- V7 + Ago (v, Vu)) —2aD(u), 1/1) 0, Vi e s, (3.2)
(V-u,q) = 0, VgeQ. (33)

Note that Re and A are functions of time and space, determined by which fluid is occupying the
point x at time t. We use

0 < Re,, := min Re,
x €Q
0 < Reps := max Re,
x €N
0<X\p := min )\,
x €N
0< Ay = maxA\.
x €Q

The space Z is the space of weakly divergence free functions. The condition

(V-u,q)=0, Vge@, ue X,
is equivalent in a “distributional” sense to

(u,Vq) =0, Vge @, ue X, (3.4)
where in (3.4), (+,-) denotes the duality pairing between H~! and H} functions. In addition, note

that the velocity and pressure spaces, X and @), satisfy the inf-sup condition

V-
inf sup u >[3>0. (3.5)
0€Q vex [lgll vl

Since the inf-sup condition (3.5) holds, an equivalent variational formulation to (3.1)-(3.3) is: find
ue Z 1eSs satisfying

(Re%‘t‘ + Reu- Vu,v> + @21 -a)D)+7,DE) = (Fv), VveZ (3.6)
(T +A (g; w4 galr vu)> _ 2aD(u),1/)> — 0, vges (3.7)

7



We assume that the fluid flow satisfies the following properties:

Il s 1Tl s IVUlloo, [VTlloo < M, (3.8)
for all t € [0, 7.
The following definitions are used in the analysis below:

b(u,7,v) = (u-Vr,9), (3.9)
c(w,u,v) = (w-Vu,v). (3.10)

3.1 Finite Element Approximation

In this section we formulate a fully discrete finite element method for solving the viscoelastic fluid
flow equations, and prove the solvability of the approximation at each step (for sufficiently small
At and h). We begin by describing the finite element approximation framework and listing the
approximating properties and inverse estimates used in the analysis.

Let T}, be a triangulation of  made of triangles (in IR?) or tetrahedrals (in IR®). Thus, the
computational domain is defined by

Q=JK: KeT,.
We assume that there exist constants ci, ¢y such that
cah < hg < copk

where hg is the diameter of triangle (tetrahedral) K, py is the diameter of the greatest ball (sphere)
included in K, and h = maxger, hix. Let Py(K) denote the space of polynomials on A of degree
no greater than k. Then we define the finite element spaces as follows.

X, = {v € XNCQ)?: v|k € Py(K), VK € Th},
Sn = {oeSNC@)": olk € Pu(K), VK € Th},
Qn = {qeQnNC():q|lk € PK), VK € Tj,},
Zp = {veXp:(q,Vv)=0,Vq€Qn}.

We assume that the velocity and pressure spaces are chosen so as to satisfy the discrete inf-sup
condition: -

v

inf sup M

a€Qn vex,, llall fvlly

Let At denote the step size for ¢, ¢, := nAt,n =0,1,2,..., N, and let

fltn) = f{tnr)

>6>0. (3.11)

di f" =
of At
We also define the following additional norms:
«— n
lollos = max 0"l

Ilv]

N 3
2
‘O,k = (Z an”kAt> .
n=1

8



When v(x,t) is defined on the entire time interval (0,7"), we use

folloose = sup oDl
0<t<T

P 1/2

Iollog = (/0 Hv(-,wuzdt) .

In addition, we make use of the following approximation properties,[9]:

. k+1 k+1 d
vlen)gh lu—v[ < Cr" ullyy, we H(Q)Y,

. k k+1 d
vl < OBl we B Q)Y

Jof [l —oll < O™ 7l TE L (Q)dxd, (3.12)
inf r—oly, < OWrlyay, 7€ B @)
it o=l < CHpl,, pe HIT@).
(3.13)
The following inverse estimates, [9], are also used:
_d
[unlle < ch™2 flunll Vg, € X,
_d
lanlle < ch™2 lgnll Van € Q. (3.14)

To solve the time-dependent flow equations numerically, time derivatives are replaced by backward
differences, and nonlinear terms are lagged. As we are assuming “slow flow”, i.e. Re = O(1), we
use a conforming finite element method to discretize the momentum equation. For the constitu-
tive equation for stress, which is hyperbolic, we use a streamline upwind Petrov-Galerkin (SUPG)
discretization to control the production of spurious oscillations in the approximation. The discrete
approximating system of equations is then:

Approximating System
Forn=1,2,...,N, findu} € Zy, 7, € Sy such that

(Re diup,v) + ¢ (Re up uZ,V) +2(1 —a)(D(up),D(v)) — (p,V -v)
+ (17}, D(v)) = (f",v), Vv € X}, (3.15)
(17.5) + (A dirit,0) + b (A=l 77,5 ) = 20 (D(uf), &
=_ ()\ ga(f;;—l,vug—l),(}) , Vo € 5,(3.16)
(V-up,q) =0, VqeQn, (3.17)
where 0 := o +vo), o) = uz_l - Vo, and v is a small positive constant.

As the spaces X}, Qp satisfy the inf-sup condition (3.11), solving (3.15) - (3.17) is equivalent to:
Forn=1,2,...,N, find u} € Zy, 7, € Sy such that

(Re diay, v) + ¢ (Re w ™! uf, v) 4 2(1 = ) (D(uf), D(v))

9



+ (11, D(v)) = (f",v), Vv € Zp, (3.18)
(77,5) + (A dirit,0) + b (A up ! 771, 5 ) = 20 (D(uf), 5)
== (N ga(m 7, VUE ), 5) , Vo € Su(3.19)

The parameter v > 0 is used to suppress the production of spurious oscillations in the approximation.
Note that for v = 0 the discretization of the constitutive equation is the usual Galerkin method.
The goal in choosing v is to keep it as small as possible, but large enough to control the generation
of catastrophic spurious oscillations in the approximate stress.

To ensure computability of the algorithm, we begin by showing that (3.18)-(3.19) is uniquely solvable
for uy and 73 at each time step n. We use the following induction hypothesis.

(IH1) Hug*Hw, T;;*HOO <K.

Lemma 2 Assume (IH1) is true. For sufficiently small step size At, there exists a unique solution
(up, ) € Zp, x Sy, satisfying (3.18)-(3.19).

Proof: For notational simplicity, in this proof we drop the subscript A from the variables. Choosing
v =ujp,o = 73, multiplying (3.15) by 2« and adding to (3.16) we obtain

a(u", 7" u", ") = 2a (f",u") + 204— (Re u” ,u")

At
— (Aga (771, V1), ) + i (Armhm), (3:20)
where the bilinear form a(u, 7;v,0) is defined as:
a(u,T;v,0) = % (Re u, u) + 2a ¢(Re u" ' u,v) + 4a(1 — a) (D(u), D(v)) + 2a (1, D(v))

—|—(7‘,5)+ (A7,0) —l—b()\u ’0-)+b()\un—1’7_,yun—1'vo_)

—2a <D<u>7 > — 20 (D(w),»u" " Vo).
Thus,
a(u,7;u,7) = ZO; (Re u,u) + 2 ¢(Re u" 1, u,u) + 4a(l — o) (D(u), D(n)) + (7,7) + v (7, 7)

+Kt (A7,7)+b ()\ ut 7, 7') +b ()\ u 7, VTU) —2av (D(u), 1) -

We now estimate the terms in a(u™, 7™;u™, 7). We have
) b )

20 2a Rey,
> n
o (Rewtw) > S

’2& ¢(Re u” l,u”,un)‘ a’(Re u* ! .Vu”,u”)‘

2ad%

IA

Rew"™!|| [[vu"|| u”|
(0.9]

IN

2ad? Cx Rey Hu"ilH |D(u™)|| (using Korn's lemma)

10



2 772 12 2
2 (6% dK C Re 2
< e l[D@")|”+ KM a2,
4a(l — @) (D(u"),D(u") = 4da(l—a)|Du")|?,
(=" = P,
(™ m)l < vt
n 2 V2 n| 2
< R+ 2 e
1 A
(A > Zmon 2
SO 2 e,
o R O R e O | RS A N
< e 4 2
— 2 U 462 Y
bt wr) = (ATl
> Al
20 (D", 7)| < 200 [ D@ |77
ny (12 a2y2 n| 2
< e D"+ e ll”
€3
Applying these inequalities to the bilinear form a(-,-; -, -) yields

2a0 Re,, a2 dK? C%( Reps

a(u”, 70", ") > ( ) la™[* + (4a(1 — @) — &1 — &) | D(w)|?

At €1
A A% 2 vt a2 2
— = AV — €2 — — — 1
+ <At 462 HT H + ml/ 62 4 63 ||Tu ||
For (1 )
-«
< me 3.21
- 14 3a ( )
and choosing €] = €3 = a(l — a), ey = %, we have that for
deg A 2¢;a R
At < min{ =20m _ SAATm 4 (3.22)
>‘M d K2 0}2(062 R€M
the bilinear form a(-,-; -,-) is positive. Hence, (3.20) has at most one solution. Since (3.20) is a
finite dimensional linear system, the uniqueness of the solution implies the existence of the solution.
|

Lemma 3 (Discrete Gronwall’s Lemma) [14] Let At, H, and ay, by, cn, Y , (for integers n >
0 ), be nonnegative numbers such that

! ! l
a —l—Athn < AtZ’ynan + Athn + H forl>0.

n=0 n=0 n=0

11



Suppose that At~y, < 1, for all n, and set o, = (1 — At~v,)~L. Then,

l l l
a; + Athn < exp (AtZan’yn> {Athn + H} for1>0. (3.23)

n=0 n=0 n=0

4 A Priori Error Estimate

In this section we analyze the error between the finite element approximation given by (3.15)-(3.17)
and the true solution. A priori error estimates for the approximation are in Theorem 4.1.

Theorem 4.1 Assume that the system (8.1)-(3.3) has a solution (u,7,p) € C2(0,T; H*1) x
C%(0,T; H™1) x C(0,T; H1tY). In addition assume that At, v < ch®?, and

[[alloos [[alloos [[Tlloos Tlloe < M for all t € [0,T7]. (4.1)

Then, the finite element approximation given by (3.15)-(3.17) is convergent to the solution of (3.1)-
(3.3) on the interval (0,T) as At, h — 0. In addition, the approximation (up,Tp) satisfies the
following error estimates:

F(At,v, h) (4.2)
F(At,v,h) (4.3)

llan = wlloco + lI7a = Tlloc 0

<
[han = alloy +ll7n = 7llop <

where
F(ALv ) = C (B ullgey + 0 furllos )
A (W rllogns + 7 el )
+ O pllg g + € (B lall s + B 7l i)
+C |At (Hut||o,1 + ||uy 00T HTtHo,l + ||TttH0,0)

+C v (Il + 7illoco) -

In order to establish the estimates (4.2)-(4.3), we begin by introducing the following notation. Let
u” = u(t,),™ = 7(t,) represent the solution of (3.6)-(3.7) at time t,, and uj, 77’ denote the
solution of (3.15)-(3.16). Let (U™, P™) denote the Stokes projection of (u™,p™) into (Zy, @), and

T™ a Clément interpolant of 7", [10]. We have the approximating properties:

la® =" < CR*H [0l

Ir" =T < ORIy s

lp" =Pl < ChTH I g1 s (4.4)
V(™ —u™)| < CRFuy
V" =T < Cr™ 17" 0pa -

—_
[\



From [7], we have the following results.

Lemma 4 : Let {Tx}, 0 < h < 1, denote a quasi-uniform family of subdivisions of a polyhedml
domain Q@ C RY. Let (K,P,N) be a reference finite element such that P C Wé( )NWH K ) where
1<p<oo,1<qg<oo0cand 0 <m <l For K €Ty, let (K,Pxg,Ng) be the affine equivalent
element, and Vi, = {v : v is measurable and v|x € Pg,YK € Ty,}. Then there exists C = C(l,p,q)
such that

1/p 1/q
(Z IIUIWI(K) < ¢ pntmn@ (Z [l ) ; (4.5)

KeTy, KeT),
for all v € V.

|
Note that it follows from (3.8) and inverse estimates, [7], that
™ oo VUM oo < M &~ M . (4.6)
Below, for simplicity, we take M= M.
Define A", E™, I'", F", ¢,, €; as
A" =u" - U", E"=U" —uy,
m=r"-T7" F'=7"—1,
€, =u—uy, €& =T—T).
The proof of theorem 4.1 is established in three steps.
1. Prove a lemma, assuming two induction hypotheses.
2. Show that the induction hypotheses are true.
3. Prove the error estimates given in (4.2),(4.3).
Step 1. We prove the following lemma.
Lemma 5 Under the induction hypothesis (IH1) and the additional assumption
-1
(IH?2) S OAL|VE"| <1
n=1
we have that
1| 12
B+ ||| < Grat h,v), (4.7)
where
2 2 2 2
GatLh) = C (B allf oy + D52 Yuillf ) + € (B2 171 s + 222 171G 01 )

2 2 2 2 2 ;
+ O pG gy + 1A (el + el + 701 + el o)

2 2
+C v (el s + Ml o) -

13



Proof of lemma 5: From (3.6)-(3.7), we have that the true solution (u,7) satisfies

(Re dyu™,v) + ¢ (Re uy u",v) +2(1 —a)(D("),D(v)) + (7", D(v))

=", v)+ (", V-v)+ Ri(v), VvV E Z, (4.8)
Adim"0) + b(Aupl7"5) — 20(D("),5) + (",5)
=— ()\ga (7',?*1, Vu’hlfl),&) + Ry(0), Vo € S, (4.9)
where
Ri(v) := (Re dpu",v) — (Re u}',v) + ¢(Re u} !, u", v) — ¢(Re u",u", v),
and

Ro(o) = (Ndyr",0) — (A1 0) — (A7 voy) + b(A uZﬁl,T", o)
—b(Au",7",5) + ()\ Ja (T,’Z’_l, Vuz_1>,5) — (A go (7", VU"),5).
Subtracting (3.15)-(3.16) from (4.8)-(4.9) we obtain the following equations for €, and €;:
(Re diey,v) + c(Re uj ™ ey, v) + 2(1—a)(D(ey), D(V)) + (7, D(V))
=", V-v)+Ri(v), VYV € Z, (4.10)
(N dier,0) +bAu} ! €r,5) — 2a (D(ew),5) + (€r,6) = Ra(0), Yo € Sh. (4.11)
Substituting €, = E" + A", ¢, = F"+T", v =E", 0 = F" into (4.10)-(4.11), we obtain
(Re &E",E™) + ¢(Re u} ', E", E") + 2(1 — a) (D(E"), D(E")) + (F",D(E")) = Fi(E"), (4.12)
(A dE",E") +b(A L B E) — 20 (D(E"), B") + (F", F") = F(F"), (413)
where,
Fi(E") = (p",V-E") + R (E") — (Re A", E") — c(Re u} ', A", E")
—2(1 —a) (D(A"), D(E")) — (T, D(E")),
Fo(E") = Ra(E")— (A dI",F") = b(A uj !, T", F") + 2a (D(A"), ") — (T", F") .

Note that
(RedB" 8" = L ((Re BB~ (Re B E"))
> ([reten] - ez et
> o (e reem )
> g (e = [,

where Re) = Re,, or Reys depending on the sign of (HE"H2 — HE"%HQ). Similarly, (A ,F", F") >

o (HF”H2 - HF"*1H2>. Then, from (4.12), we have that

1 n n
e 201 — ) (D(B"), D(B")

(F", D(E")) <

gt (181 =B ) + petre i By +
1

*
n

L1
Re;,

FL(EM). (4.14)

14



Multiplying (4.14) by Re,,At and summing from n =1 to [ gives

o (HEZH ~ [ ) + Z {Remm Rew!™! E" E") + Re’ZZAtzu ~ o) | DEM)?
l
R;,ZnAt (F™, D(E“))} < nz::l RZZ?E(E”). (4.15)
Similarly, from (4.13) we have that
2 (gt — || + zl: Amft F". F") +b(Au} " F" F") — 2 (D(E"),F"
2 —
Zl: LRET).  (4.16)

Multiplying (4.15) by 2« and adding to (4.16) yields

o en (|- )+ Am(HFlHQ—HFOHQ)+4a<1—a>iRﬁ;’;? ()P
n=1 n

A2 At Am At

—I-VZ m__F?? + (4.17)

n=1

AZ

20 Rem

IN

( (E") — ¢(Re u} ', E",E") — (F", D(En))>

+ At Z A’f (B(Fn) — b\~ L ET BT + 20 (D(E"), B) - v (B, )
— n
Noting that Re,, < Re; < Repy,Am < A: < Au, applying the triangle inequality to the right

hand side of (4.17), we have that -

Re,, At

o Fen (HE’W - HE°H2) 2 ([ ) + 00 -3 Bt
n=1

l || Z )\7& ”F”] < Atz {QQ‘ Re uz 1 ,E" E") ‘ ’b()\ uzil,Fn,F")‘
n=1

IDE")|*

4200 |(D(E"), FD)| + 20 (1= 252 ) (DB, F")| + v |(F",F) |

l
+ALY {20 | F1L(EM)| + [F2(F™)|} (4.18)

n=1

We now estimate each term on the right hand side of (4.18). For c(u} !, E", E") we have that

20 c(Re u} ' E", E") < 2aRey ‘(uz—l . VE”,E”)‘

< 2a Rey|[uj™" - VE”

15



IN

2 Reay |w, ™| dz | VE"| [B"]
d K?

IN

40°Re e, | VE™ | + ||EnH , using (IH1).

dK2
40’ Re}; Ck e ||DEM)|* + —— HE”H

IN

(using Korn’s lemma)
Note that for v = 0 on 012, applying Green’s theorem we have
b(v,7,0) = =b(v,o,7)—(V-vT,0),

= b(v,7,7) = —% (Vvr,7).

Using (4.21),

’b(AuZ’l, F", F”)’ < %M ‘ (V' E, F”)‘

i (V- —um ) B F) 4 (VU R F)|

IN

oz e i ey
)\M (

IN

Hv E" 1” IF"|” + M [E"|]?) , using (4.6).

Next, with R = (1 — Re,,/Ren),

20 R|(D(E™),F")| < 2« R|D(E")||F"|
< 4a2R262||D(E")|| + HF"H
Then
2a|(D(E"), vF)| < 2o || D(E")]] HvF"H
< 4da’e ||D(E")|? + IIF”||
Also,
[(F" vED] = vI[(F" Fy)
< vI[[E HF"H

S | IIF"II

Thus, for the first summation on the right hand side of (4.18), we have

Atz {20 |e(Re W™ B BY)| + b\ wp ™t FLE)| + 200 [(D(ET), FY)|

(4.19)

l
~2a R|(D(E"), F")| + v |[(B", Fp)|} < At Y (40*(CE Redjer + R2e + €) ) | D(EM)|)”

n=1

16



l ’
n AM (4 n—1 1 n2
z:: ( ) B2 +Atnz:l (2 (d]|ve|_+m) +4€2+1) [l
l V2
+At Z ( ) ||| (4.22)
Next we consider F;(E™).
", V-EY)| = [(p" - P", V-E")|
71
< lp" =P dz [|[VE"|
d
< C%es ||DEY)|? + 1o IP" =P (Korn's lemma). - (4.23)
5
(Re d: A", E")| < Ren [|E"|| Hth"H
< Rejy |B"|* + Hthnll
‘C(Re uZ’l,A",E")’ < Rey ||E"| Hu;; L. VA”H
n n— 71 n
< Rea [E"] i~ _d> VA"
K2
< R |E"|? + —— HVA”H using (IH1). (4.24)
n n n 1 n
2(1 = a)|(D(A™), D(E"))| < (1 —a)e || D(E )H (A™)[]*. (4.25)
(T, DE™)) < [[DE")] [T
< el DEY|*+ ||F”H (4.26)
For the R (E") terms we have:
1
|(Re diu" E") — (Re uf',E")| < Refy [B"|* + 7 [[dpu” — uf||*. (4.27)
‘C(Re u} ' u", E") — ¢(Re u",u", E")‘ = ’C(Re (Wt = U™, u" E") + ¢(Re U™t —u™ ), u", E)

+e(Re (0! —u™), u”, E”)‘

IA

Rexg B4 wu" | B + Reas [A"" - vur| 7]
Rey (" —u ) - Vur| B

IN

Rey d M HE”‘1H IE"|| + Rep d M HA”—1H IE"|
YRey d M H(u” - u”_l)H IE"|| , using (3.8)
Ré3,d>M? H Re Md2M H

IN

o] R A

Re2 d’2M2 tn
+6Mfm/ lw|* dt. (4.28)
tn—1

Combining (4.23)-(4.28) we have the following estimate for F;(E"):

A

20F(EY)| < 20(Ches + (1 - a)eg + er) | DE™)? + 20 (3ReM+ )HE”H

17



) 2 d , 2
+a Ref, d? M2 B+ 20— (7" = P")I* + @ Ref,d* M a1
€5
K2d 1-a 1 1
+2a | = + VA2 + a= ||dA”]]? + a— | 172
4 66 2 267

1 . &
o |[du" — u?||® 4+ a Re?, dQMQAt/ 1 g |? dt. (4.29)
tn—

Next we consider the terms in Fo(F™).
n Pn 2 n||2 1 n| 2
((AdeT™, F™)] < Ay [1F™ (7 + o [T (4.30)

’b(AuZ’l, ™, F")' ’b()\u’,fl, I F") + b(Au} ', I, vF")

< [t v [E ) g g VT F
,1 s1 _
< rd? w9 aned g v oEs|
o o0
dK?
< N FP 2 [FP 4 == VTP (4.31)
20| (D(A™),E")| = 2a|(D(A™),F") + (D(A"),vF}) .
< JER 02 FL + 202 VA" (4.32)
r*.¥*)| = |(P",F")+v (" vF"

u

1
SO e L e (4.33)

For the terms making up Ro(F™) we have:

[(Ade7™, F") — (A", )| < [[AF"|| [[de7™ — 7/"|| (4.34)
< NP+ g lder — 7R (4.35)
O Bl = | (A gt VFH)]
= |BOwa L E )|
< [BOww 7 B 4 (Vw7 ((using (4.20) )
< || ) (V- un ) R )|

+|(Vurt wEn, )|
Mg [ B R IE A+ A [ 9 = |

IN

v | a2

I/2

< s (r VR ) I+ 2 (@ 02 )
+”:K2d’||vm|2, (‘using (4.6) and (IH1) ) . (4.36)
b=t 7 B — b, 7 B = | (Aup Tt a9t B

18



IN

[ SR I

IN

T 52 97 i o

2

IN

1.
e | T B o N

IN

3. qn2 3. N2
)‘?\J HFnHZ + )\?WVQ HFZH2 + §d3M2 HEn 1H + §d3M2 HAn 1H
3 £
+§d3M2At/ || dt . (4.37)
tn—1
In order to estimate the g, terms in F»(-) note that

Moo (77 VY = ga (77, V")) = A (ga (77 V(u’,; Leunh) +

+9a (T~ —u") +

Ja (7';;‘ Lvwnt —u” 1))
Ja (T;Z L_gn- I,Vu)

")
+9a (T” L_ =l vu” )+g ( T",Vu”))
= /\( ga< -1 VE"™ 1)—ga(7',:‘ , VA"~ 1)
_ga( -1 V( u 1)) (Fn lvvun>
—ga (T, V") = g, (7" = 7, V) ) (4.38)
Bounding each of the terms on the right hand side of (4.38) we obtain
(e (7 VE) )] < o (77" V)| 67|
< dd || 7 e [
< e[| o B e SR e
(Mg (7t VA1), B7) | < 8d2K HVA”‘1H2 A2 F? + A2 | FY 2, (4.40)

n

((Aga (777, V(" = um ) < 8d’2K2At/t IVl dt 53, P+ 2302 FP, (4.41)
~ P 2

F 8 M2 [ B+ 03, B + 2302 R (4.42)
~ P 2

((Aga (T2, v ), B7) | < 8d2M? [T N3, 8717 + A3 R (4.43)

IN

! t
S

~—— — ~— ~— ~—
IA

% tn
8d2M2At/tn_1 7l dt + M3 ||F™|1? + A2 [Fo?. (4.44)

Combining the estimates in (4.30)-(4.37), (4.39)-(4.44), we obtain the following estimate for Fo(F"):

8d2K2A%\4>

2
F(F)] < e [VET 402 <6A%4+3+ -
8

8d2K2\3,

+d HVE"*H >
€8 00

+||F™)? (11A%W +2+
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#le [ (gdr) + o [ (sieare)

2 |An i ot (45 ) e () + e ()
+Hw e (8d2K2 At (Gdar )+ ot (sdar?)

+ ™ — 72 + = <d2M2+dHVE" 1H Y2l + K2d||VTt"||

tn
+3d3M2At/ s dt+8d2M2At/ 7|12 dt+8d2K2At/ IVus|? dt. (4.45)

Then, from (4.18) we have that

o e ([ ) + 2 ([ - [9F) + 4001 -0 32 2o g+ Z“t
n=1

2
IE2

+ Z Ajjt B> < At Z {40 (Ck Refyer + Rex +ea) 420 (Ciees + (1 = a)es +ex) | [ D(EY)?

n Atz Ches||DE) H +Atz (K + 20 (3R6M + 3)) |E"|)?
+ Atz <
AvdM 1 8d2K2)\2
- - M} I

+AtZ{<+1>dHVE” L+ 25 g TR I

3d2 M?

+a ReMd2M2> e

+ Atz 8d*M? HFn_1H2

1 8d2 K2 )\2
+At§ v <+ +6X3, + 3+ M F? 2
€8

4eg
+At22ad\" P +Atz(aRe 07 ¢ 3dM>HA” I
+AtZ2a<K42d o )HVMH +Atz8‘{2K2HVM_1H2

+Atz:1§Hth 2 +Atz:11\|dtr I 8ty (5o +5 ) 1T

n=1
l 7192 l
Py o+ 3 sear o
—|—AtZ—Hdtu —u?? +Atz |dyr™ — 7|
n=1 n= 1

+AL Z T (d’ZM2 + d’HVEHHOO) 712
n=1

20



l n
ALY <aRe§wd’2M2At + Zcz’w?m) /n_1 ™

n=1

+Atz K2d||VT |12 +At28d2M2At/ 17 dt
n=1 n=1
l

Ve tn
+At28d2K2At/ [ Tu? de
n=1 tn=

With the following choices:

Rep (1 —a) Rep (1 — ) Rep (1 —a)
€1l = ———5— € — ——————= € — —Mm 7~
' 7 14CZ Re3,0 2 14R2Reya’ 7 Tl Reya
_ Rep(1—a) _ Rey, _ Rep(1-a)
© T TIC2Rey = TRen’ T T TRey
Rep2a(1 —
o= Hem2all=0) =0 _y0 (L mO=0), =7 (=F=0),

7R€M C%( ’

substituting into (4.46) yields

o e B+ 22 [+ 2000 ) e e 3 00w

A2 o TR?Reyor 28d%2 C% K2)\3,Rep; 13 ) .
+ <V>\M Y <2Rem(1 — a) + a(l — a)Rem Y 4 67k Atnz::l Il
A gy <01AtzuE"|| +Atz s (14 [vE- ) E?
+)\M

n=1

+03AtZ||A”|| +C4AtZ||VA”H + AtZHd A"

n=1 n=1 n=1

+ AtZHdtI‘”H +C5AtZHI‘"H +06AtZHvr"||

n=1 n=1 n=1

[0
+§AtZ||dtll —up|? + AtZHdtT -7

n=1

2a0d <&
+a—A Z _pn|2

Ay Y -

P 3., 2
+ 18t (aRG M + SEM) il + K247 IVl
+ 8d2 M2 | At || 7|13 o + 82K | AL [V - (4.47)

We now apply the interpolation properties of the approximating spaces to estimate the terms on
the right hand side of (4.47). Using elements of order k for velocity, elements of order m for stress,

21
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and elements of order ¢ for pressure, we have

l l l l
D ALVA"P AL VE? < C (h% D Aty +RP Y A HTnHinA)

n=1 n=1 n=1 n=1

< O (W allg gy + 2 NI ) (4.48)

l

l
doAL[ATP AT +ZAtllp P2
n=1

n=1 n=1

< <h2k+2 STAL 2, + K2 Z At |75 4 + B2 Z Atlp" ”q+1>
n=1 n=1
2 2
< C (W™ ullg s + B WG s + 22 P11 (449)

1 [t»  OA
— 1—dt
At /t ot

l l
STAL|GAMP = YAt
n=1 n=1

l 2
1 tn tn 7 ON

(LY ([ ) ([ (2 a)

712::1 At o \Jt,_, tn_1 \ Ot
< CR P2 ugl§ s (4.50)

and similarly,

!
> AT < CR |7 s - (4.51)
n=1

Note that d;u™ — uf’ may be expressed as

1

tn
dou® — ul = E/t Wity ) (1 — 1) dt.
n—1

Also,

2
1 tn 1 tn tn
— Wi (-, ) (tney — ) dt < 7/ u -,tht/ tno1 — )2 dt
(mt/tn_l () (b — 1) > T KA MG

1 tn
= —At 2 (.. 1) dt.
12 An_l utt(’ )

Therefore it follows that

l l
n§:1:AtHdtu _w? < Z: /QEN/ w2 (-, t) dt dx

tn—1
1
= A el (152

Similarly, for d;7"" — 7;* we have

!
ST At|dyr" = P
n=1

1
< 1 A [l o - (4.53)
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In view of (4.48)-(4.53), our induction hypotheses (IH1),(IH2), and with v chosen such that

v <

1
2

2Ren, (1 — ) + a(l — a)Rey, Tt

A2, [ TR?Reya 2842 C% K2\%Reys 13 5 \
672,
from (4.47) we obtain

Re,,
Re M

v

o Re B+ 22 B + 2001 — )

l l

< Y At(IEP +IF) + 00 At |[VEJFE 4 v i,
n=1

n=1

2 1
v — 2 2 2 2 2 2
+ YA VE I+ Ot (S + ImliSe + uulSo + 7o)
n=1

k 2 2
+CH* 2 ullg opy + CH 2 ([Tl gy + ORI

2 2 2
+ChH2 HutHO,k+1 +Ch*" ‘HT‘HO,erl + CR*m? HTtHo,mH ]

l 2 l
n )‘m n
SONEREES v Sk

2 k 2
0g+1 T Ch? ”‘u|”0,k+1

(4.54)

(4.55)

where the C’s denote constants independent of I, At, h,v. Applying Gronwall’s lemma and (IH2)

to (4.55), the estimate given in (4.7) follows.

|
Step 2. We show that the induction hypotheses, (IH1) and (I H2) are true.
Verification of (IH1)
Assume that (I H1) holds true for n = 1,2,...,l — 1. By interpolation properties, inverse estimates
and (4.7), we have that
R e e
o0 (0.9} (o.9]
< |+ e
o0 o
< Cna |[El|| +one Al +
—d —d k=4 am—d | ggt1-d4 | kt1-d
< C(\At\h RS E TS B NS B ) FM. (456)

d

Note that the expression C' <|At| h™% +vh™% + BF~8 4 B8 4 patlog 4 hkﬂg) is independent

of I. Hence, if we set k,m > g,q > g — 1, and choose h, At, v such that

d
. . . 1 hE
RE5 hmes petlt < D Aty < o
27 27 2 f— C? 7]/ - C )
then from (4.56)
[uh| < a6
o0

Similarly it follows that HT}l‘Hoo <M +6.

23

(4.57)



Verification of (/H2)
Assume that (IH2) is true for n = 1,2,...,l — 1. Equations (4.7), (4.55), and Korn’s inequality
imply

l
> AL VE[ < C (B 4+ B2 4 242 4 At 4 02) (4.58)
n=1
Applying the inverse estimate and using the inequality
! ! 3
S an < i ( 5 az) ,
n=1 n=1

from (4.58) we obtain

l o1
STAL|VE|, < ChTE Y At||VEY|
n=1 n=1
! 3
< Ch—gﬂt\ﬁ(zjm”vmﬁ)
n=1

< C <At Y B Lo SRS hq“‘g) ;

where C = C'V/T is a constant independent of [, h, At, and v. Hence when

d

h2
v, At < %, (4.59)

and

IN

L
5C°
(IH2) holds.

Step 3. We derive the error estimates in (4.2) and (4.3).
Proof of the Theorem 4.1.
Using estimates (4.7) and (approximation properties), we have
2 2 2 2 2 2
lfa —unllS o+ lI7=mll50 < NElZ 0+ 1Mo + IIF NS0 + 1T 5,0
k 2 2
< GALRY) + O (B2 ull oy + B2 I )

Note the restrictions on v and At from (4.54), (4.57), (4.59), (3.21), (3.22), and the hypothesis of
Theorem 4.1.

To establish (4.3), from (4.7), (4.55), we have

IVEI;, < C(T+1)G(At, h,v) (4.60)

and
G, +IFG, < TG(ALA,w). (4.61)

Hence
IEI o+ IFll5, < CG(ALh,v). (4.62)
|
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5 Numerical Results

In this section, we present two numerical simulations of viscoelastic fluid flow involving two immis-
cible fluids. For a discussion on the numerical implementation of the continuum surface force model
see [22].

Example 1: An Elliptical Minor Phase Evolving to a Circular Shape
Let ©:=(0,1) x (0,1), and at ¢t = 0, let

(r—0.5)2  y—05)2 (r—0.5)2 y—0.5)2
Q= : 1, 7:= : =1
! {@’ W om T oome < (v): s T o

and Qo = Q\ (21 UZ). Initially, both fluids are at rest, u(x,0) = 0. We assume, Re; = Rea = 1.0
and A\; = Ay = 0.1. It is common in polymer processing that two fluids have very similar properties
so the above assumptions are reasonable. Also, the coefficient of interfacial tension is assumed to
be constant, o = 5.0.

From a minimum energy argument, we have that the interfacial forces will drive €; from its initial
elliptical profile to a circular orientation.

In the computations we use for v, the SUPG coeffecient, v = 0.6h, and take At = h/2. To
approximate the velocity and pressure we use the Taylor-Hood approximation pair (continuous
piecewise quadratics for velocity, continuous piecewise linears for pressure) and use a continuous
piecewise linear approximation for the polymeric stress.

Presented in Figures 5.1, 5.2, 5.3, and 5.4 is the velocity field and the interface 7 at times t =
0.00,0.11,0.55, and 3.54, for the grid with h = 1/64.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.1: Initial velocity field Figure 5.2: Velocity field after 10 time steps
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[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 [ 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.3: Velocity field after 50 time steps Figure 5.4: Velocity field after 320 time steps

In Table 5.1, we list ||upl|,; and [|7]]y, at time T = 3.536, together with their experimental
convergence rates. The experimental convergence rate for [|up|,, was computed as follows. From
Theorem 4.1, the choice of approximating elements used, v = 0.6 h, and At = h/2, we have

llanllor = lhallo, < flhan =ullo, < Co k. (5.63)
Using ‘Hul/M‘Hm — ullp; = Cd; and ‘Hul/@mm — [lullp, = C4, we obtain an estimate for
llullg 1 ~ llusol| = 0.455327 and an estimate for C, = 1.072320.

Using [|ucolflg; We then compute the experimental convergence rates for [[up|,, given in Table 5.1.
The experimental convergence rates for [|7,[|, o are computed analogously. From Theorem 4.1 and
(5.63), we have that the theoretical asymptotic convergence rates for [[up|ly; and [[74]o o is 1.

Exp. conv. Exp. conv.
h llunlly, | rate lrallgo | rate
1/32 | 422046 | 1.00 463853 | 1.00
1/40 | .428505 | 1.00 458594 | 1.00
1/45 | 431560 | 1.00 456062 | 1.00
1/48 | 432987 | 1.00 .454650 | 1.00
1/50 | 434386 | 1.01 454567 | 0.99
1/54 | 436445 | 1.01 453620 | 0.98
1/64 | 438572 | 1.00 449975 | 1.00
[ oo | .455327 | 435950

Table 5.1: Experimental Rates of Convergence for Example 1

Example 2: Dual Movement Circular Cavity

In this example, the inner rod of a circular cavity moves in a counter clockwise direction while
the outer wall of the cavity moves in a clockwise direction simultaneously. Both inner and outer
velocities have magnitude of one. Figures 5.5 and 5.6 give an indication of the role that interfacial
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tension can play in the mixing process. Initially, the region of minor phase fluid is circular, with
radius 0.2 and center (0, —.67). Figures 5.5 and 5.6 present the interfacial shape at time ¢ = 1.5 for
o = 0.3 and o = 1.0, respectively. The following parameters are used in the simulation:

h
Rey = Rey = 1.0,\1 = Ay = 0.1,h = 0.0500808, and At = .

1 1

08 08
06 06
04f 04t /1
o0.2ff 0z
0 r’ ! 0
\
02f R 2N
o4l \ 04
06 08

-0.8 -08

El L L L . a L . n L L "
=1 08 -06 -04 -02 0 0z 0.4 0.6 0.8 1 =1 08 -06 -04 -02 0 0.2 04 0.6 0.8 1

Figure 5.5: Interface after 140 time steps: Figure 5.6: Interface after 150 time steps:
oc=20.3 oc=1.0

Experimental convergence rates for the case o = 0.3 are presented in Table 5.2.

Exp. conv. Exp. conv.

h l[anllo, | rate Il | rate
1/21 | 7.38302 | 1.00 2.64138 | 1.00
1/24 | 7.37221 | 1.00 2.63755 | 1.00
1/27 | 7.36414 | 1.00 2.63481 | 1.00
1/30 | 7.35769 | 1.00 2.63243 | 1.00
1/33 | 7.35256 | 1.00 2.63052 | 1.00
o0 7.29958 2.61289

Table 5.2: Experimental Rates of Convergence for Example 2: ¢ = 0.3
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