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Abstract. In this article we propose and analyze an a posteriori error estimator for a three-field
model of a generalized Stokes problem. The components of the a posteriori error estimator are
defined via a non-linear projection of the residues of the variational equations. Both upper and
lower bounds for the approximation error are derived in terms of the components of the a posteriori
error estimator. The non-linear projections do not need to be explicitly computed to construct the
a posteriori error estimates.
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1 Introduction

A posteriori error estimates are an important tool in solving fluid flow problems, whose solutions
can exhibit complicated structures. An a posteriori error estimate can be used as an indicator for
guiding adaptive numerical methods. Computational effort can then be efficiently channelled to
those regions in the flow domain that require particular resolution of fine-scale structures. For most
physical problems, simple uniform refinement across the entire computational domain can quickly
exhaust computational resources, often without determining a satisfactory approximation.

The three-field model of a generalized Stokes problem may be considered as a prototype for vis-
coelastic problems since the mathematical description of a viscoelastic fluid is invariably in terms
of three fields due to the nonlinear constitutive equation relating the stress to the strain. Very
little work has been done on a posteriori error estimation for viscoelastic flow problems. Here, the
need for affordable and reliable error indicators is even greater than for Newtonian flow problems
due to the larger number of dependent variables required in the mathematical formulation. For
two-dimensional planar flows there are six dependent variables for viscoelastic problems compared
with three for Newtonian problems when within the primitive variable formulation.

The estimation procedures that have been proposed to date for viscoelastic flows can be divided
into two classes: element residual methods (see [22], for example) and subdomain residual methods
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[12]. Evidence for the appropriateness of these methods as a means of obtaining reliable error
estimators has been empirical to date and there is, therefore, an urgent need to establish reliable
error estimators for this class of fluid flow problems. The majority of papers dealing with error
estimates for viscoelastic flow problems include estimates of the stress errors in their error estimates.
An exception to this is the work of Mutlu et al. [17], who used an a posteriori error estimate based
solely on the velocity gradients to guide the adaptive strategy.

Yurun and Crochet [26] have shown that, even in the absence of theoretical justification, the use
of element residual methods for error estimation in adaptive procedures can lead to solutions of
highly elastic liquids through complex geometries at costs which are less than those incurred with
uniform meshes. In this approach a p−adaptive high-order streamline-upwinded Petrov-Galerkin
finite element method was used for the simulation of the flow of a UCM fluid through a 4 : 1
axisymmetric smooth contraction. The maximum residual error at each of the nodes in a given
element was taken as the elemental error indicator and solutions beyond a Weissenberg number
We = 10 were obtained without difficulty. However, with the adaptive procedure which they used
the rate at which the residual error was reduced decreased with polynomial enrichment leading the
authors to conclude that a better adaptive procedure based on reliable error estimates was needed.

An element residual method for viscoelastic flows proposed by Warichet and Legat [25] was an
obvious example of an attempt to extend the element residual method used by Ainsworth and Oden
[1] for the Stokes problem. No theoretical results are given by the authors and evidence for the
success of their estimators, as with others in the viscoelastic literature, is purely empirical. These
ideas were further developed by Owens [19] and Chauvière and Owens [5] in an attempt to provide
some theoretical undergirding to the choice of appropriate error indicators for viscoelastic problems.
In the latter paper it is shown that the local elemental error residual for the elastic stresses only
accounts for the so-called stress cell error and therefore is not generally an adequate measure of the
local error. An improved error indicator, which takes into account the transmitted error, is proposed
and computed on an element-by-element basis.

In [7] Gatica et al. proposed and analysed a posteriori error estimators for a low-order method
for generalized Stokes flow. The formulation used as a four-field approach in which the gradient
of the velocity was treated as an additional unknown. They applied a Bank-Weiser type analysis
to construct reliable and quasi-efficient a posteriori error estimates for their mixed finite element
approximations.

In this paper we propose a residual based a posteriori error estimate for a three-field model of a
generalized Stokes problem. Largely motivating our investigation is the numerical approximation of
fluids having a power law constitutive equation, i.e.

σ = ν0 |d(u)|r−2 d(u) , ν0 > 0, 1 < r < 2, (1.1)

where σ denotes the extra stress tensor, u the fluid velocity, and d(u) := (∇u + ∇uT )/2 the rate
of deformation tensor. (Here and throughout the paper we use the following notation: ∇u is the
tensor gradient of u, for tensors σ = (σij), τ = (τij), σ : τ =

∑
i,j σijτij , |σ|2 = σ : σ . Also, for

r > 1 we denote its unitary conjugate by r′, satisfying r−1 + r′−1 = 1.)

The power law model has been used to model the viscosity of many polymeric solutions and melts
over a considerable range of shear rates [11].

Other constitutive equations having a similar form to the power law model include [4, 15, 20]:
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Ladyzhenskaya Law [14]:

σ = ν0 + ν1 |∇u|r−2 d(u) , ν0 ≥ 0, ν1 > 0, r > 1 , (1.2)

used in modeling fluids with large stresses.
Carreau Law :

σ = ν0

(
1 + |d(u)|2)(r−2)/2

d(u) , ν0 > 0, r ≥ 1 , (1.3)

used in modeling visco-plastic flows and creeping flow of metals.

The a posteriori error estimators we propose in this paper are extensions of those studied in [1] (for
the Stokes and Oseen equations) and similar to those given in Sandri [23], with the difference being
that the residual functions lie in different spaces. In [23] the residual functions were defined in the
dual spaces of the test functions. Herein, via non-linear projections, we introduce residual functions
defined in the same spaces as the test (and trial) functions. However, one does not need to compute
the non-linear projections in order to construct the a posteriori error estimates.

The error estimates we derive involve the residual of the variational equations (variational residues),
as opposed to the residual of the modeling equations (strong residues). The variational residues differ
from the strong residues in that powers of the mesh parameter h do not appear as multipliers of
various terms in the expression. The constant multipliers in the variational residual estimates only
depend upon the coercivity and continuity constants (c and M , in (2.9),(2.10)) and the two inf-sup
constants (γV P and γV S , in (2.14), (2.15)). The constants appearing in the strong residual estimates
additionally involve the norm of the inverse of the linearized adjoint problem and interpolation
constants. We also note that our error estimates are established independently of how the numerical
approximation (σN ,uN , pN ) of the exact solution (σ,u, p) is obtained. In, other words, the residual
functionals need not satisfy any sort of Galerkin orthogonality property.

Though our investigations were largely motivated by the power law model, our analysis presented
below is for a general constitutive model satisfying assumptions A1, A2, and A3, described below.

The paper is organized as follows. In the next section we introduce the generalized Stokes problem,
notation, and state our assumptions regarding the modeling equations. The error estimators are
introduced in Section 3 and their relationship to the true error investigated. In Section 4 we discuss
issues related to the actual computation of the a posteriori error estimators.

2 Mathematical Model

Mathematical Notation
Used in the analysis below are the following function spaces and norms.

T :=
(
Lr′(Ω)

)d́×d́

s
=

{
τ = (τij); τij = τji; τij ∈ Lr′(Ω); i, j = 1, . . . , d́

}
,

with norm ‖τ‖T :=
(∫

Ω |τ |r
′
dΩ

)1/r′
. (The subscript s is used to denote the subspace of symmetric

tensors.)
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V :=
(
W 1,r

0 (Ω)
)d́

, with W k,p(Ω) denoting the usual Sobolev space notation. We take for the norm

on V , ‖v‖V :=
(∫

Ω |∇v|r dΩ
)1/r, which is equivalent to the usual ‖ · ‖W 1,r norm by the Poincaré-

Friedrichs lemma.

P := Lr′
0 (Ω) =

{
q ∈ Lr′(Ω) :

∫

Ω
qdΩ = 0

}
,

with norm ‖q‖P :=
(∫

Ω |q|r
′
dΩ

)1/r′
.

For a Banach space X, X ′ denotes its dual space with associated norm ‖ · ‖X′ . For σ, τ tensors, u,
v vectors, f , g, scalars, we use 〈·, ·〉 to denote the scalar quantities 〈σ, τ〉 := σ : τ , 〈u,v〉 := u · v,
and 〈f, g〉 := fg.

Model Problem
Let Ω denote a bounded domain in IRd́, (d́ = 2, 3), with boundary ∂Ω. We take as our model
problem: Given the body force term f , determine σ,u, p satisfying

σ = g(u) in Ω , (2.1)
−∇ · σ + ∇p = f in Ω , (2.2)

∇ · u = 0 in Ω , (2.3)
u = 0 on ∂Ω . (2.4)

In (2.1)-(2.4) σ represents the extra stress tensor, u the fluid velocity, and p the fluid pressure.
Equation (2.1) represents a constitutive model for the fluid (see (1.1)-(1.3) for examples).

We make the following assumption for the constitutive modeling equation (2.1).
A1: g(u) is (formally) uniquely invertible to obtain

d(u) = ğ(σ)σ , ( or ∇u = ǧ(σ)σ)

and the inverse is continuous.

For the power law fluid (1.1), taking the inner-product of both sides of the equation with itself we
obtain

|σ|2 = ν2
0 |d(u)|2r−2 . (2.5)

Combining (2.5) with (1.1) we obtain

d(u) = ν1−r′
0 |σ|r′−2σ ,

as described by A1.

Introduce the functionals a : T × T → IR, b : T × V → IR, s : V × P → IR, defined by

a(σ, τ) :=
∫

Ω
ğ(σ)σ : τ dΩ , (2.6)

b(τ,u) :=
∫

Ω
τ : d(u) dΩ , (2.7)

s(v, p) :=
∫

Ω
∇ · v p dΩ . (2.8)
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Additionally, we assume the following coercivity and continuity properties for G(σ) := ğ(σ)σ.

A2: (G(t1)−G(t2)) : (t1 − t2) ≥ c|t1 − t2|r′ , ∀t1, t2 ∈ IRd́×d́ , (2.9)

A3: |G(t1)−G(t2)| ≤ M (|t1|+ |t2|)r′−2 |t1 − t2| , ∀t1, t2 ∈ IRd́×d́ . (2.10)

For the power law fluid properties A2, A3, follow from ([6],pg. 319)

(‖ξ‖p−2ξ − ‖η‖p−2η
) · (ξ − η) ≥ C‖ξ − η‖p , ξ, η ∈ IRd́, p ≥ 2, c > 0 ,

‖‖ξ‖p−2ξ − ‖η‖p−2η‖ ≤ M (‖ξ‖+ ‖η‖)p−2 ‖ξ − η‖ , ∀ξ, η ∈ IRd́, p ≥ 2.

We will assume that the body force term f in the momentum equation represents a conservative
vector field. Then, there exists a scalar function fp (unique up to a constant) such that

f = ∇fp .

In Section 4 we discuss the modification required when f is not a conservative vector field.

Using the above notation, the variational formulation of (2.1)-(2.4) may be stated as: Given a

conservative vector field f ∈
(
W−1,r′

0 (Ω)
)d́

, determine (σ,u, p) ∈ T × V × P such that

a(σ, τ) − b(τ,u) = 0 , ∀τ ∈ T , (2.11)

b(σ,v) − s(v, p) =
∫

Ω
fp∇ · v dΩ , ∀v ∈ V , (2.12)

s(u, q) = 0 , ∀q ∈ P . (2.13)

Associated with the unique solvability of (2.11)-(2.13) are the two inf-sup conditions:
Velocity-Pressure inf-sup:
There exists γV P > 0 such that

inf
q∈P

sup
v∈V

s(v, p)
‖v‖V ‖q‖P

≥ γV P . (2.14)

Velocity-Stress inf-sup:
There exists γV S > 0 such that

inf
v∈V

sup
τ∈T

b(τ,v)
‖τ‖T ‖v‖V

≥ γV S . (2.15)

For TN ⊂ T , V N ⊂ V , PN ⊂ P , the usual three-field numerical approximation to (2.11)-(2.13) is
given by (see [7, 15] for alternate approximation methods): Determine (σN ,uN , pN ) ∈ TN×V N×PN

such that

a(σN , τ) − b(τ,uN ) = 0 , ∀τ ∈ TN , (2.16)

b(σN ,v) − s(v, pN ) =
∫

Ω
fp∇ · v dΩ , ∀v ∈ V N , (2.17)

s(uN , q) = 0 , ∀q ∈ PN . (2.18)
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Analogous to (2.14) and (2.15), associated with (2.16)-(2.16) are the following inf-sup conditions on
the approximation spaces TN , V N , and PN .
Discrete Velocity-Pressure inf-sup:
There exists γ̃V P > 0 such that

inf
q∈P N

sup
v∈V N

s(v, p)
‖v‖V ‖q‖P

≥ γ̃V P . (2.19)

Discrete Velocity-Stress inf-sup:
There exists γ̃V S > 0 such that

inf
v∈V N

sup
τ∈T N

b(τ,v)
‖τ‖T ‖v‖V

≥ γ̃V S . (2.20)

Existence and uniqueness of solutions to (2.11)-(2.13), and (2.16)-(2.18) were studied in [2], and a
priori error estimates for the error in the approximations derived for d́ = 2. Boundedness of the
approximation (σN ,uN , pN ) follow automatically from the boundedness of (σ,u, p) and the a priori
error estimate. Central to the analysis of (2.11)-(2.13), and (2.16)-(2.18) are the inf-sup conditions.
The discrete velocity-pressure inf-sup condition (2.19) also occurs in the approximation of Stokes
and Navier-Stokes problems. As such, spaces V N and PN satisfying (2.19) are well studied (see
for example [9, 10]). For the traditional h−approximation method spaces satisfying (2.20) have
been investigated in [23, 15]. For the spectral approximation method compatible spaces have been
investigated in [8].

3 A Posteriori Error Estimators

In this section we introduce the a posteriori error estimators and show that they form both upper
and lower bounds to the error in the approximations, in suitable norms.

Define the functionals A : T × T → IR, B : V × V → IR, S : P × P → IR, as:

A(Υ, τ) :=
∫

Ω
|Υ|r′−2 Υ : τ dΩ ; Υ ∈ T , τ ∈ T , (3.1)

B(R,v) :=
∫

Ω
|∇R|r−2∇R : ∇v dΩ ; R ∈ V , v ∈ V , (3.2)

S(R, q) :=
∫

Ω
|R|r′−2 R q dΩ ; R ∈ P , q ∈ P . (3.3)

Note that by Hölder’s inequality

∫

Ω
|Υ|r′−2 Υ : τ dΩ ≤

(∫

Ω
(|Υ|r′−2 |Υ|)r dΩ

)1/r (∫

Ω
|τ |r′ dΩ

)1/r′

=
(∫

Ω
|Υ|(r′−1)r dΩ

)1/r

‖τ‖T

= ‖Υ‖r′/r
T ‖τ‖T .
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Thus, A : T × T → IR is well defined. Similarly, we have that B and S are also well defined.

For the functionals A, B and S the choice of the kernels (i.e. |Υ|r′−2, |∇R|r−2, and |R|r′−2, respec-
tively) are chosen such that both arguments lie in the same (appropriate) functional space.

Next, observe that

A(Υ, Υ) = ‖Υ‖r′
T , B(R,R) = ‖R‖r

V , S(R, R) = ‖R‖r′
P . (3.4)

Let ε := σ − σN , e := u− uN , and e := p− pN .
We now introduce residual functions (Υ,R, R) ∈ T ×V ×P , and corresponding residual functionals
(R1,R2,R3) : T × V × P → IR, defined by

A(Υ, τ) := a(σ, τ) − a(σN , τ) − b(τ, e) = R1(τ) := − a(σN , τ) + b(τ,uN ) , (3.5)

B(R,v) := b(ε,v) − s(v, e) = R2(v) :=
∫

Ω
fp∇ · v dΩ − b(σN ,v) + s(v, pN ) ,

(3.6)

S(R, q) := s(e, q) = R3(q) := − s(uN , q) , (3.7)

for all (τ,v, q) ∈ T × V × P . The existence of (Υ,R, R) ∈ T × V × P follows from the theory of
monotone operators (see [27], also [6]).

Define an “error magnitude”, |||(ε, e, e)|||∗∗, as

|||(ε, e, e)|||∗∗ = A(Υ,Υ) + B(R,R) + S(R, R) . (3.8)

In passing, we make the following observation. For the functional J : T × V × P → IR defined by

J(τ,v, q) :=
1
2

(
1
r′
A(τ, τ) +

1
r
B(v,v) +

1
r′
S(q, q)

)

− (
a(σ, τ) − a(σN , τ) − b(τ, e) + b(ε,v) − s(v, e) + s(e, q)

)
, (3.9)

it is straightforward to show that

−1
2
|||(ε, e, e)|||∗∗ = J(Υ,R, R) = inf

(τ,v,q)∈T×V×P
J(τ,v, q) . (3.10)

3.1 Relationship between (ε, e, e) and (Υ,R, R)

In this section we show the relationship between the residual functions and the true error. These
relationships are summarized in the following theorem.

Theorem 3.1 For (σ,u, p) satisfying (2.11)-(2.13) and (σN ,uN , pN ) ∈ T×V×P an approximation,
with (Υ,R, R) defined in (3.5)-(3.7) we have that there exists a constant C independent of the
approximation parameters such that

‖σ − σN‖r′
T ≤ C

(
‖Υ‖r′

T + ‖R‖r2/r′
V + ‖R‖r

V + ‖R‖r′
P

)
, (3.11)

‖u− uN‖r
V ≤ C

(
‖Υ‖r′

T + ‖Υ‖r
T + ‖R‖r3/r′2

V + ‖R‖r2/r′
V + ‖R‖r

P

)
, (3.12)

‖p− pN‖r′
P ≤ C

(
‖Υ‖r′

T + ‖R‖r2/r′
V + ‖R‖r

V + ‖R‖r′
P

)
. (3.13)
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and

‖Υ‖r′
T ≤ C

(‖σ − σN‖r
T + ‖u− uN‖r

V

)
, (3.14)

‖R‖r
V ≤ C

(
‖σ − σN‖r′

T + ‖p− pN‖r′
P

)
, (3.15)

‖R‖r′
P ≤ C

(‖u− uN‖r
V

)
. (3.16)

Proof : The proof of (3.11)-(3.13) uses the inf-sup conditions and properties A2 and A3.
Using (2.15),

‖u− uN‖V ≤ 1
γV S

sup
τ∈T

b(τ,u− uN )
‖τ‖T

=
1

γV S
sup
τ∈T

a(σ, τ) − a(σN , τ) − A(Υ, τ)
‖τ‖T

≤ 1
γV S

sup
τ∈T

a(σ, τ) − a(σN , τ)
‖τ‖T

+
1

γV S
sup
τ∈T

A(Υ, τ)
‖τ‖T

. (3.17)

Applying Hölder’s inequality we obtain

sup
τ∈T

A(Υ, τ)
‖τ‖T

= sup
τ∈T

∫
Ω |Υ|r

′−2Υ : τ dΩ
‖τ‖T

≤ sup
τ∈T

(∫
Ω(|Υ|r′−2|Υ|)r dΩ

)1/r (∫
Ω |τ |r

′
dΩ

)1/r′

‖τ‖T

= ‖Υ‖r′/r
T . (3.18)

Combining (3.17) and (3.18) we have the following estimate

‖u− uN‖V ≤ 1
γV S

sup
τ∈T

a(σ, τ) − a(σN , τ)
‖τ‖T

+
1

γV S
‖Υ‖r′/r

T . (3.19)

From the velocity-pressure inf-sup condition

‖p− pN‖P ≤ 1
γV P

sup
v∈V

s(v, p− pN )
‖v‖V

=
1

γV P
sup
v∈V

b(σ − σN ,v) − B(R,v)
‖v‖V

≤ 1
γV P

sup
v∈V

‖σ − σN‖T ‖v‖V

‖v‖V
+

1
γV P

sup
v∈V

B(R,v)
‖v‖V

. (3.20)

As above, using Hölder’s inequality

sup
v∈V

B(R,v)
‖v‖V

= sup
v∈V

∫
Ω |∇R|r−2∇R : ∇v dΩ

‖v‖V

≤ sup
v∈V

(∫
Ω(|∇R|r−2|∇R|)r′ dΩ

)1/r′ (∫
Ω |∇v|r dΩ

)1/r

‖v‖V

= ‖R‖r/r′
V . (3.21)
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Combining (3.20) and (3.21)

‖p− pN‖P ≤ 1
γV P

‖σ − σN‖T +
1

γV P
‖R‖r/r′

V . (3.22)

Next we bound ‖σ − σN‖T . Substituting τ = σ − σN into (3.5) and using (3.6) and (3.7)

a(σ, σ − σN ) − a(σN , σ − σN ) = A(Υ, σ − σN ) + b(σ − σN ,u− uN )
= A(Υ, σ − σN ) + B(R,u− uN ) + s(u− uN , p− pN )
= A(Υ, σ − σN ) + B(R,u− uN ) + S(R, p− pN )

≤ ‖Υ‖r′/r
T ‖σ − σN‖T + ‖R‖r/r′

T ‖u− uN‖V + ‖R‖r′/r
P ‖p− pN‖P

≤ ‖Υ‖r′/r
T ‖σ − σN‖T

+ ‖R‖r/r′
T

(
1

γV S
sup
τ∈T

a(σ, τ) − a(σN , τ)
‖τ‖T

+
1

γV S
‖Υ‖r′/r

T

)

+ ‖R‖r′/r
P

(
1

γV P
‖σ − σN‖T +

1
γV P

‖R‖r/r′
V

)
. (3.23)

Using the coercivity assumption (2.9),

a(σ, σ − σN ) − a(σN , σ − σN ) =
∫

Ω
(ğ(σ)σ − ğ(σN )σN ) : (σ − σN ) dΩ

≥ c

∫

Ω
|σ − σN |r′ dΩ

= c‖σ − σN‖r′
T . (3.24)

Also,

a(σ, τ) − a(σN , τ) =
∫

Ω
(ğ(σ)σ − ğ(σN )σN ) : τ dΩ

≤
∫

Ω
|ğ(σ)σ − ğ(σN )σN ||τ | dΩ

≤
(∫

Ω
|ğ(σ)σ − ğ(σN )σN |r dΩ

)1/r

‖τ‖T . (3.25)

Using the continuity assumption (2.10),

(∫

Ω
|ğ(σ)σ − ğ(σN )σN |r dΩ

)1/r

≤
(∫

Ω
M r (|σ|+ |σN |)(r′−2)r |σ − σN |r dΩ

)1/r

≤ M ‖ |σ|+ |σN | ‖(r′−2)
T ‖σ − σN‖T

≤ M
(
‖σ‖(r′−2)

T + ‖σN‖(r′−2)
T

)
‖σ − σN‖T . (3.26)

Thus,

sup
τ∈T

a(σ, τ) − a(σN , τ)
‖τ‖T

≤ C
(
‖σ‖(r′−2)

T + ‖σN‖(r′−2)
T

)
‖σ − σN‖T . (3.27)
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Combining (3.23),(3.24),(3.27), together with the boundedness of σ and σN , we have

c‖σ − σN‖r′
T ≤ C

(
‖Υ‖r′/r

T ‖σ − σN‖T

+ ‖R‖r/r′
V ‖σ − σN‖T + ‖Υ‖r′/r

T ‖R‖r/r′
V

+ ‖R‖r′/r
P ‖σ − σN‖T + ‖R‖r/r′

V ‖R‖r′/r
P

)
.

Applying Young’s inequality then yields

‖σ − σN‖r′
T ≤ C

(
‖Υ‖r′

T + ‖R‖r2/r′
V + ‖R‖r

V + ‖R‖r′
P

)
. (3.28)

Now, using (3.27),(3.28) in (3.19) and (3.22) we obtain

‖u− uN‖r
V ≤ C

(
‖Υ‖r′

T + ‖Υ‖r
T + ‖R‖r3/r′2

V + ‖R‖r2/r′
V + ‖R‖r

P

)
, (3.29)

‖p− pN‖r′
P ≤ C

(
‖Υ‖r′

T + ‖R‖r2/r′
V + ‖R‖r

V + ‖R‖r′
P

)
. (3.30)

To establish estimates (3.14)-(3.16) we use (3.5)-(3.7).

A(Υ, Υ) = ‖Υ‖r′
T = a(σ,Υ) − a(σN , Υ) − b(Υ,u− uN )

≤ M
(
‖σ‖(r′−2)

T + ‖σN‖(r′−2)
T

)
‖σ − σN‖T ‖Υ‖T + ‖Υ‖T ‖u− uN‖V

⇒ ‖Υ‖r′
T ≤ C

(‖σ − σN‖r
T + ‖u− uN‖r

V

)
. (3.31)

B(R,R) = ‖R‖r
V = b(σ − σN ,R) − s(R, p− pN )

≤ ‖σ − σN‖T ‖R‖V + ‖R‖V ‖p− pN‖P

⇒ ‖R‖r
V ≤ C

(
‖σ − σN‖r′

T + ‖p− pN‖r′
P

)
. (3.32)

S(R,R) = ‖R‖r′
P = s(u− uN , R)

≤ ‖u− uN‖V ‖R‖P

⇒ ‖R‖r′
P ≤ C ‖u− uN‖r

V . (3.33)

4 Computation of A Posteriori Error Estimators

In this section we discuss the computation of the a posteriori error estimators. The actual residual
functions Υ, R, R, defined by the non-linear projection (3.5)-(3.7), do not need to be explicitly
computed. The a posteriori error bounds (3.11)-(3.13) are given in terms of the norms of the
residual functions, not the residual functions themselves. As shown below the computations of
these norms turn out to be very natural , involving the residuals of the variational equations.

Evaluation of ΥT
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From the definition of Υ, (3.5), and using (2.11), we have
∫

Ω
|Υ|r′−2Υ : τ dΩ = a(σ, τ) − b(τ,u) − (

a(σN , τ) − b(τ,uN )
)

, ∀τ ∈ T

= −
∫

Ω

(
ğ(σN )σN − d(uN )

)
: τ dΩ , ∀τ ∈ T

⇒ 0 =
∫

Ω

(
|Υ|r′−2Υ + ğ(σN )σN − d(uN )

)
: τ dΩ , ∀τ ∈ T

⇒ |Υ|r′−2Υ = − (
ğ(σN )σN − d(uN )

)
. (4.1)

Taking the inner-product of both sides of (4.1) with themselves yields

|Υ|2r′−2 =
(
ğ(σN )σN − d(uN )

)
:
(
ğ(σN )σN − d(uN )

)
. (4.2)

Hence, taking the r/2 power of both sides of (4.2) and integrating over Ω we obtain

‖Υ‖r′
T =

∫

Ω
|Υ|r′−2Υ : Υ dΩ

=
∫

Ω

[(
ğ(σN )σN − d(uN )

)
:
(
ğ(σN )σN − d(uN )

)]r/2
dΩ , (4.3)

which represents rth power of the Lr norm of residue of (2.11).

Evaluation of R
Proceeding analogously as for Υ we obtain

‖R‖r′
P =

∫

Ω
|∇ · uN |r dΩ , (4.4)

which represents rth power of the Lr norm of residue of (2.13).

Evaluation of R
From the definition of R, (3.6), and using (2.12) and that σN is a symmetric tensor, we have

∫

Ω
|∇R|r−2∇R : ∇v dΩ = b(σ,v) − s(v, p) − (

b(σN ,v) − s(v, pN )
)

, ∀v ∈ V

=
∫

Ω
fp∇ · v dΩ −

∫

Ω
σN : ∇v dΩ +

∫

Ω
∇ · v pN dΩ , ∀v ∈ V

=
∫

Ω

(
fp I − σN + pN I

)
: ∇v dΩ , ∀v ∈ V , (4.5)

which implies
|∇R|r−2∇R = fp I − σN + pN I . (4.6)

In (4.5) and (4.6) I denotes the identity tensor.

Proceeding as above we obtain

‖R‖r
V =

∫

Ω

[(
fp I − σN + pN I

)
:
(
fp I − σN + pN I

)]r′/2
dΩ , (4.7)
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which we recognize as the r′ th power of the Lr′ norm of residue of (2.12).

In case f does not represent a conservative vector field we introduce the unique f̃ ∈
(
W 1,r′

0 (Ω)
)d́

satisfying ∫

Ω
∇f̃ : ∇v dΩ =

∫

Ω
f · v dΩ , ∀v ∈ V . (4.8)

(Note that for the approximation of f̃ , using the same test and trial spaces, (4.8) represents the
inversion of a symmetric, positive definite operator. Hence, very efficient numerical schemes such
as preconditioned conjugate gradient, and multigrid, may be used to accurately approximate f̃ in a
preliminary calculation.)
In place of (2.12) we use

b(σ,v) − s(v, p) =
∫

Ω
f · v dΩ , ∀v ∈ V . (4.9)

‖R‖r
V is then given by

‖R‖r
V =

∫

Ω

[(
∇f̃ − σN + pN I

)
:
(
∇f̃ − σN + pN I

)]r′/2
dΩ . (4.10)

Conclusion
A general a posteriori error estimator for a three-field model of a generalized Stokes problem has
been proposed and analyzed. The estimator may be applied to a wide range of approximations,
as only minimal assumptions are made regarding the approximation. The constants appearing in
the upper and lower bound estimates are clearly identified. The components of the a posteriori
error estimator are easily computable, and when appropriately combined, provide upper and lower
bounds to the approximation error. However, the computed components do not directly relate to
physical quantities. For example, ‖Υ‖r′

T small does not imply that the physical quantity ‖σ−σN‖r′
T

is necessarily small. Some new types of error estimators using quantities of physical interest have
recently been developed, see [3, 18] and the references therein.
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