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Abstract

In this article, we analyze the fractional-step θ method for the time-dependent convection-
diffusion equation. In our implementation, we completely separate the convection operator from
the diffusion operator, and stabilize the convective solve using a streamline upwinded Petrov-
Galerkin (SUPG) method. We establish a priori error estimates and show that the optimal value
of θ yield a scheme that is second order in time. Numerical computations are presented which
demonstrate the method and support the theoretical results.
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1 Introduction

Modeling equations of mixed type often appear in physical applications. This paper is motivated
by the work in [20], [21],[22] on the numerical approximation of viscoelastic fluid flow. The mod-
eling equations (assuming slow flow) represent a “Stokes system” for the Conservation of Mass
and Momentum equations, coupled with a non-linear hyperbolic equation describing the constitu-
tive equation for the stress. The numerical approximation requires the determination of the fluid’s
velocity, pressure and stress (a symmetric tensor). For an accurate approximation a direct approx-
imation technique requires the solution of a very large non-linear system of equations at each time
step. The fractional step θ-method [22] decouples the approximation of velocity and pressure from
the approximation of the stress, thereby reducing the size of the algebraic systems which have to be
solved at each sub-step. An added benefit of the θ-method [22] is that the algebraic systems to be
solved at each sub-step are linear.

In this paper we analyze the θ-method for the scalar convection-diffusion problem. This problem
is chosen because the approximation scheme studied is similar to that in [22]. The middle sub-step
in both applications is a pure convection (transport) problem, and the first and third sub-steps are
parabolic problems.
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jchrisp@clemson.edu vjervin@clemson.edu lea@clemson.edu. Partially supported by the NSF under grant no.
DMS-0410792.
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The fractional step θ-method was introduced, and its temporal approximation accuracy studied for
a symmetric, positive definite spatial operator, by Glowinski and Pirreneau in [9]. The method
is widely used for the accurate approximation of the Navier-Stokes equations (NSE) [23], [12]. In
[16], Kloucek and Rys showed, assuming a unique solution existed, that the θ-method approximation
converged to the solution of the NSE as the spatial and mesh parameters went to zero (h, ∆t → 0+).
The temporal discretization error for the θ-method for the NSE was studied by Müller-Urbaniak in
[18] and shown to be second order.

The implementation of the fractional step θ-method in [22] for viscoelasticity differs significantly
from that for the NSE. For the NSE at each sub-step the discretization contains the stabilizing
operator −∆u. For the viscoelasticity problem, and the convection-diffusion problem, analysed in
this paper, the middle-substep is a pure convection (transport) problem.

Operator splitting methods for convection-diffusion problems can be divided into two approaches:
(i) additive decomposition methods, and (ii) product decomposition methods. Additive decompo-
sition methods rewrite the spatial operator as a sum of several operators. At each sub-step in the
approximation algorithm the spatial operator is replaced by its additive decomposition, with some
of the operators evaluated at the current time (i.e. treated implicitly) and the others at past times
(i.e. treated explicitly). Examples of this approach are the Alternating Direction Implicit (ADI)
methods [19],[14],[6],[17] and the IMplicit EXplicit (IMEX) schemes [1],[11]. With product decom-
position methods, to advance the approximation from time tn−1 to tn, firstly a pure convective
operator is applied to obtain an initial estimate at tn. This estimate is then taken as the initial
data at tn−1 and a pure diffusion operator used to determine the approximation at tn. Examples
of this approach include the work of Dawson and Wheeler [5], [4], Khan and Liu [15], and Evje and
Karlsen [8]. (See Section 4 in [7] for a survey of these methods.)

The fractional step θ-method we study is an additive decomposition method, with the desirable
features of a product decomposition method. In the first and third sub-steps of the three sub-step
algorithm a pure diffusion problem is approximated. In the second sub-step a pure convection
problem is approximated.

This paper is organized as follows. In the next section we specify the problem we are studying and
give the mathematical notation which we use. In Sections 3 and 4 we describe the fractional step
θ-method for the convection-diffusion equation, show computability of the algorithm, and give the
a priori error estimates for the method. A discussion on the optimal choice of the θ parameter is
given in Section 5. Several numerical examples demonstrating the method are presented in Section
6.

2 Mathematical Problem and Notation

In this section we introduce the problem studied in this paper and the mathematical notation used.
We also recall Gronwall’s inequality which is used in the error analysis.

Below we study the numerical approximation of the following linear convection-diffusion equation
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using the fractional step θ-method.

∂u

∂t
−4u + b · ∇u + c u = f in Ω× (0, T ] (2.1)

u(x, t) = 0, x ∈ ∂Ω× (0, T ] (2.2)
u(x, 0) = u0(x), x ∈ Ω, (2.3)

where b = [b1(x, t), b2(x, t)]T is an incompressible velocity field (i.e ∇ · b = 0), c(x, t) ≥ c0 is an
absorption coefficient, and f(x, t) is a given body force.

The L2(Ω) norm and inner product are denoted by ‖·‖ and (·, ·), respectively. We use Hk to represent
the Sobolev space W k

2 , and ‖·‖k denotes the norm in Hk. We let X denote the space H1
0 (Ω). When

v(x, t) is defined on the entire time interval (0, T ), we define

‖v‖∞,k := sup
0<t<T

‖v(·, t)‖k , ‖v‖0,k :=
(∫ T

0
‖v(·, t)‖2

k dt

)1/2

, ‖v‖(t) := ‖v(·, t)‖ .

We assume that Ω ⊂ IR2 is a polygonal domain and let Th denote a regular triangulation of Ω.
Thus, the computational domain is given by

Ω = ∪K; K ∈ Th.

We assume that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2ρK ,

where hK is the diameter of triangle K, ρK is the diameter of the greatest ball (sphere) included
in K, and h = maxK∈Th

hK . Let Pk(A) denote the space of polynomials on A of degree no greater
than k. Then we define the finite element space Xh as:

Xh :=
{
v ∈ X ∩ C(Ω̄) : v|K ∈ Pk(K), ∀K ∈ Th

}
.

Let U be the L2 projection of u onto Xh, and use u(n) := u (·, n∆t). Used in the error analysis are
Λn and En defined by

Λn := un − Un , En := Un − un
h .

For 0 ≤ θ ≤ 1
2 , we define the temporal operator dθu

(n) as

dθu
(n) :=

u(n) − u(n−θ)

θ∆t
.

The following discrete norms are used in the analysis.

|||v|||∞,k := max
1≤n≤N

∥∥∥v(n)
∥∥∥

k
, |||v|||0,k :=

(
N∑

n=1

∆t
∥∥∥v(n)

∥∥∥
2

k

) 1
2

.

The discrete Gronwall inequality is used to establish a priori error estimates.
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Lemma 2.1 ([10]) Let ∆t,H, and an, bn, cn, γn (for integers n ≥ 0) be nonnegative numbers such
that

al + ∆t
l∑

n=0

bn ≤ ∆t
l∑

n=0

γnan + ∆t
l∑

n=0

cn + H for l ≥ 0.

Suppose that ∆tγn < 1∀n, and set σn = (1−∆tγn)−1. Then

al + ∆t
l∑

n=0

bn ≤ exp

(
∆t

l∑

n=0

σnγn

){
∆t

l∑

n=0

cn + H

}
for l ≥ 0. (2.4)

3 The θ-method

The governing equation (2.1) can be represented abstractly as

∂u

∂t
+ F (u, x, t) = 0 in Ω× (0, T ] (3.1)

where

F (u, x, t) = −4u + b · ∇u + cu− f.

We split the operator F (u, x, t) as

F (u, x, t) = F1(u, x, t) + F2(u, x, t) (3.2)

where

F1(u, x, t) = −4u +
c

2
u− f (3.3)

F2(u, x, t) = b · ∇u +
c

2
u. (3.4)

Let F (n) := F
(
u(n), x, n∆t

)
. We now describe a θ-method for the linear convection-diffusion prob-

lem.
Step 1: Given u(n), compute an approximation to u(n+θ) by

dθu
(n+θ) + F

(n+θ)
1 = −F

(n)
2 (3.5)

Step 2: Given u(n+θ), compute an approximation to u(n+1−θ) by

d(1−2θ)u
(n+1−θ) + F

(n+1−θ)
2 = −F

(n+θ)
1 (3.6)

Step 3: Given u(n+1−θ), compute an approximation to u(n+1) by

dθu
(n+1) + F

(n+1)
1 = −F

(n+1−θ)
2 . (3.7)

Our corresponding discrete variation formulation to (3.5)–(3.7) is: Determine u
(n+θ)
h ∈ Xh, u

(n+1−θ)
h ∈

Xh, and u
(n+1)
h ∈ Xh satisfying

(
dθu

(n+θ)
h +

c

2
u

(n+θ)
h , v

)
+

(
∇u

(n+θ)
h ,∇v

)
=

(
f (n+θ) − b · ∇u

(n)
h − c

2
u

(n)
h , v

)
, ∀v ∈ Xh, (3.8)
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(
d(1−2θ)u

(n+1−θ)
h , v

)
+

(
b · ∇u

(n+1−θ)
h +

c

2
u

(n+1−θ)
h , vb

)
=

(
f (n+θ) − c

2
u

(n+θ)
h , vb

)
−

(
∇u

(n+θ)
h ,∇v

)
+

(
4u

(n+θ)
h , δb · ∇v

)
, ∀v ∈ Xh, (3.9)

(
dθu

(n+1)
h +

c

2
u

(n+1)
h , v

)
+

(
∇u

(n+1)
h ,∇v

)
=

(
f (n+1) − b · ∇u

(n+1−θ)
h − c

2
u

(n+1−θ)
h , v

)
, ∀v ∈ Xh.(3.10)

Note: (i) To stabilize the convection (transport) equation (3.6), a Streamline Upwind Petrov
Galerkin (SUPG) method is used. The term vb is defined as vb := v + δb · ∇v.

(ii) The term (4uh, δb · ∇v) is defined elementwise as (see Johnson [13]):

(4uh, δb · ∇v) :=
∑

K∈Th

∫

K
4uh (δb · ∇v) dA.

(iii) The solution u(x, t) of (2.1),(2.2), satisfies the continuous variational formulation

(ut, v) + (∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, v), ∀v ∈ X . (3.11)

Remark: As mentioned previously, the θ-method described here differs from the approach used
in [23],[12] for the numerical approximation of time-dependent Navier-Stokes equations in that in
Step 2 of the above equation we are solving a pure transport problem. The investigation of this
formulation is motivated by the application of the θ-method to time-dependent viscoelastic fluid
flow problems, where such an approach leads to a decoupling of update equations for the stress and
the velocity-pressure.

4 Analysis of the θ-method

The first step in the analysis of the method is to show that the scheme (3.8)–(3.10) is computable.
That is, we need to show that the associated coefficient matrices on the left hand side of (3.8),(3.9),
and (3.10) are invertible.

Lemma 1 There exists a unique solution u
(n+θ)
h ∈ Xh satisfying (3.8).

Proof: Equation (3.8) can be equivalently written as

A(u(n+θ)
h , vh) =

(
f (n+θ) +

1
θ∆t

u
(n)
h − b · ∇u

(n)
h − c

2
u

(n)
h , vh

)
, ∀vh ∈ Xh , (4.12)

where
A(w, z) =

1
θ∆t

(w, z) + (∇w,∇z) + (
c

2
w, z) .

Note that (4.12) represents a square linear system of equations Ac = f .

The fact that
A(w, w) =

1
θ∆t

(w,w) + (∇w,∇w) + (
c

2
w, w) > 0
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guarantees that ker(A) = {0}. Hence it follows that (3.8) has a unique solution.

The unique solvability of (3.10) follows exactly as for (3.8). For (3.9) the same approach, together
with the divergence free assumption for b (i.e. ∇ · b = 0), establishes the unique solvability.

A priori error estimates

Having established the computability of the algorithm given in (3.8)-(3.10) we next address the
question of the accuracy of the resulting approximation. This result is given in Theorem 1, and a
discussion of its proof presented below. A detailed proof is given in [3].

Theorem 1 For a sufficiently smooth solution u, with ∆t ≤ Ch2 and δ ≤ Ch, the fractional step
θ-scheme approximation, uh given by (3.8)-(3.10), converges to u on the interval (0, T ] as ∆t, h → 0,
and satisfies the error estimates:

|‖u− uh‖|0,1 ≤ G(∆t, h, δ) +Chk |‖u‖|∞,k+1 and |‖u− uh‖|∞,0 ≤ G(∆t, h, δ)+ Chk+1 |‖u‖|∞,k+1

(4.13)
where

G(∆t, h, δ) = C(∆t)2
(
‖uttt‖0,0 + ‖utt‖0,1 + ‖utt‖0,0 + ‖ftt‖0,0

)

+C∆t δ
(
‖ut‖0,2 + ‖ut‖0,1 + ‖ut‖0,0 + ‖ft‖0,0

)

+Chk+1 ‖ut‖0,k+1 + Chk |‖u‖|0,k+1 + Cδ |‖ut‖|0,0

Outline of the proof : To outline the proof of Theorem 1 it is instructive to review the procedure
for obtaining an a priori estimate for an approximation scheme with a unit stride, i.e. only involving
terms u

(0)
h , u

(1)
h , . . ., u

(n)
h , u

(n+1)
h .

Step 1. Subtract the continuous and discrete variational equations and, after adding, subtracting
terms and rearranging, obtain an expression of the form:
(
(u(n+1) − u

(n+1)
h )− (u(n) − u

(n)
h ) , vh

)
+

1
2
∆tBpos((u(n+1)−u

(n+1)
h ), vh) =

1
2
∆tBrem(∆t, f, u, u

(n)
h , vh) ,

where Bpos denotes the positive part of the operator.

Step 2. Use u(n) − u
(n)
h = Λ(n) + E(n), and choose vh = E(n+1), to obtain an expression of the

form
∥∥∥E(n+1)

∥∥∥
2
−

∥∥∥E(n)
∥∥∥

2
+

1
2
∆tBpos(E(n+1), E(n+1)) ≤ 1

2
∆t B̃rem(∆t, f, u, Λ(n), Λ(n+1), E(n), E(n+1)) .

(4.14)
Equation (4.14) is then summed from n = 0 to n = l − 1 to obtain (assuming the E(0) = 0)

∥∥∥E(l)
∥∥∥

2
+ ∆t

l∑

n=1

Bpos(E(n), E(n)) ≤ 1
2
∆tR(∆t, f, u,Λ(n),Λ(n+1), E(n), E(n+1)) . (4.15)
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Step 3. Apply suitable inequalities/estimates to the Bpos and R terms in (4.15).

Step 4. Apply Gronwell’s lemma 2.1, with al =
∥∥E(l)

∥∥2
to obtain an estimate for

∥∥E(l)
∥∥.

Step 5. Use the triangle inequality, ‖u(l) − u
(l)
h ‖ ≤ ‖Λ(l)‖ + ‖E(l)‖, and approximation properties

to obtain the a priori estimate.

The term ‖Λ(l)‖ is estimated using interpolation properties.

Note that a key step in the analysis outlined in Steps 1–5 is the construction of the expression∥∥E(n+1)
∥∥2 − ∥∥E(n)

∥∥2
which telescopes under summation to

∥∥E(l)
∥∥2

.

With the θ-method there is not a uniform stride. Approximations u
(n+1)
h , u

(n+1−θ)
h , and u

(n+θ)
h

are computed. In order to generate appropriate telescoping expressions, linear combinations of
equations (3.8), (3.9), and (3.10) need to be formed.

Step 1θ. Form the following linear combinations of equations (3.8), (3.9), and (3.10) to obtain
equations involving u

(n+1)
h − u

(n)
h , u

(n+1−θ)
h − u

(n−θ)
h , and u

(n+θ)
h − u

(n−1+θ)
h , respectively.

θ ∆t (3.10) + (1− 2θ)∆t (3.9) + θ ∆t (3.8) (4.16)
(1− 2θ)θ ∆t (3.9) + θ ∆t (3.8) + θ ∆t ((3.10) with n → n− 1) (4.17)

θ ∆t (3.8) + θ ∆t ((3.10) with n → n− 1) + θ ∆t ((3.9) with n → n− 1) . (4.18)

Subtract equations (4.16), (4.17), and (4.18), from (3.11), and after adding, subtracting terms and
rearranging, to obtain equations

(
(u(n+1) − u

(n+1)
h )− (u(n) − u

(n)
h ) , vh

)
+

1
2
∆tGpos((u(n+1) − u

(n+1)
h ), vh) =

1
2
∆tGrem(∆t, f, u, u

(n+1−θ)
h , u

(n+θ)
h , u

(n)
h , vh) .

(
(u(n+1−θ) − u

(n+1−θ)
h )− (u(n−θ) − u

(n−θ)
h ) , vh

)
+

1
2
∆tHpos((u(n+1−θ) − u

(n+1−θ)
h ), vh) =

1
2
∆tHrem(∆t, f, u, u

(n+θ)
h , u

(n)
h , u

(n−θ)
h , vh) .

(
(u(n+θ) − u

(n+θ)
h )− (u(n−1+θ) − u

(n−1+θ)
h ) , vh

)
+

1
2
∆tKpos((u(n+θ) − u

(n+θ)
h ), vh) =

1
2
∆tKrem(∆t, f, u, u

(n)
h , u

(n−θ)
h , u

(n−1+θ)
h , vh) .

Step 2θ. This step is similar to Step 2 described above and equations for
∥∥E(l)

∥∥2
,
∥∥E(l−θ)

∥∥2
, and∥∥E(l−1+θ)

∥∥2
are obtained. These three equations are then added together to form a single equation.

Step 3θ. Suitable inequalities/estimates are then applied to the terms in the equation.

Step 4θ. Gronwell’s lemma is applied with al =
∥∥E(l)

∥∥2
+

∥∥E(l−θ)
∥∥2

+
∥∥E(l−1+θ)

∥∥2
.

Step 5θ. The triangle inequality is applied to get the error estimate for
∥∥∥u(l) − u

(l)
h

∥∥∥+
∥∥∥u(l−θ) − u

(l−θ)
h

∥∥∥+∥∥∥u(l−1+θ) − u
(l−1+θ)
h

∥∥∥.
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Below in Section 6 we present numerical results for a continuous, piecewise linear approximation to
u. For this case (4.13) gives the following estimate.

Corollary 1 For Xh the space of continuous, piecewise linear functions, ∆t ≤ Ch2, δ ≤ Ch, and
u sufficiently smooth, the approximation uh satisfies the error estimate:

|‖u− uh‖|0,1 ≤ C
(
(∆t)2 + ∆t δ + h + δ

)
and |‖u− uh‖|∞,0 ≤ C

(
(∆t)2 + ∆t δ + h + δ

)
.

(4.19)

5 Optimal θ

In [9] Glowinski and Periaux studied the convergence and stability of the θ-method for

du
dt

+ Au = 0 ,

where A was assumed to be a constant p× p symmetric, positive definite matrix and u ∈ IRp. The
decomposition they considered (see (3.2)) was, for α ∈ (0, 1),

Au = αAu + (1− α)Au,

i.e. F1(u, t) = αAu and F2(u, t) = (1 − α)Au. Using an eigenvalue analysis, the authors were
able to establish that for the choice θ = 1 − √

2/2 the fractional step θ-method was second order
accurate in time, independent of the choice of α.

An eigenvalue analysis approach is not possible for the approximation method described in (3.8)–
(3.10). In Step1θ of the analysis outlined above, the linear combinations given in (4.16),(4.17), and
(4.18) give rise to expressions having the following forms.

• In Grem:
θu(n+1) + (1− θ) u(n+θ) − u(n+ 1

2) ,

(1− θ) u(n+1−θ) + θu(n) − u(n+ 1
2) .

• In Hrem:
θu(n) + (1− θ) u(n+θ) − u(n+ 1

2
−θ) ,

(1− 2θ) u(n+1−θ) + θu(n) + θu(n−θ) − u(n+ 1
2
−θ) .

• In Krem:
θu(n) + (1− θ) u(n−θ) − u(n+θ− 1

2) ,

(1− 2θ) u(n+θ−1) + θu(n) + θu(n+θ) − u(n+θ− 1
2) .
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In order to obtain suitable estimates for these expressions, the terms are expanded in a Taylor series
about (n+1/2)∆t, (n+1/2− θ)∆t, and (n+ θ− 1/2)∆t for the Grem, Hrem, and Krem expressions,
respectively. When this is done the first order terms in the expansions, i.e. the coefficients of ∆t,
all reduce to a constant multiple of

2θ2 − 4θ + 1 . (5.1)

The roots of (5.1) are θ = 1±√2/2. Thus in order to have a second order temporal discretization
error the only possible choice for θ satisfying 0 < θ < 1/2 is θ = 1−√2/2.

The optimal θ value was investigated numerically by calculating experimental convergence rates for
the convection-diffusion problem given in (2.1)–(2.3) for b = [1, 1]T , c = 1.0, Ω = (0, 1)× (0, 1), Xh

the space of continuous piecewise linear functions, and f and u0 determinded by the true solution

u(x, y, t) = 10xy(1− x)(1− y)ex4.5
(1− t4) . (5.2)

The meshes used in calculating the experimental convergence, illustrated in Figure 5.1, were obtained
by dividing the spatial (h) and temporal (∆t) discretization parameters on each successive mesh by
two. As the spatial discretization scheme is second order, we expect the experimental convergence
rate to be determined by the temporal discretization. Figure 5.1 indicates that when θ = 1−√2/2
the method has second order convergence with respect to both h and ∆t.

Figure 5.2 displays the error |‖u − uh‖|0,0 at T = 1 on a mesh with ∆t = 1/128, and h =
√

2/320
for different values of θ. The smallest error corresponds with θ = 1−√2/2.
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Figure 5.1: Experimental Convergence Rates.
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Figure 5.2: Error |‖u − uh‖|0,0 as a function
of θ.

6 Numerical Computations

To demonstrate the fractional step θ-method (3.8)–(3.10) for convection diffusion problems, in this
section we consider three examples. Example 1 is a simple convection-diffusion problem with a
constant velocity field and a constant absorption coefficient. For Example 2 we consider a problem
where the diffusion coefficient is several orders of magnitude less than the magnitude of the velocity

9



field. The solution in Example 3 represents a steep moving front propagating through the domain.
The value of θ used for the computations in this section was θ = 1−√2/2. For the three examples
we compute a sequence of continuous, piecewise linear approximations uh, by dividing the time step
∆t and the spatial mesh parameter h by two. As the true solutions to the examples are known, we
compute the experimental convergence rates (Cvge. Rate) for various choices of the parameter δ.
As ∆t = Ch, from Corollary 1, (4.19), the predicted convergence rates are |‖u− uh‖|0,1 ≤ C(h+δ),
and |‖u− uh‖|∞,0 ≤ C(h + δ). The numerical results obtained are consistent with these estimates.

In the proof of Theorem 1 the restriction ∆t ≤ Ch2 is used. Computationally this is a very
restrictive condition. For the numerical results obtained below we do not enforce this constraint. It
is an open question if this condition is necessary for (4.13).

Example 1. For the model equations (2.1)–(2.3) we take b = [1, 1]T , c = 1.0, Ω = (0, 1) × (0, 1),
Xh the space of continuous piecewise linear functions, and f and u0 determined by the true solution

u(x, y, t) = 10xy(1− x)(1− y)ex4.5
(1− t4) .

The solution is a slightly skewed bubble function which decays to zero at t = 1. The numerical
results for this example are presented in Table 6.1.

θ = 1−√2/2 Time T = 1.0

δ ↓ (∆t, h) → ( 1
10 ,

√
2

8 ) ( 1
20 ,

√
2

16 ) ( 1
40 ,

√
2

32 ) ( 1
80 ,

√
2

64 ) ( 1
160 ,

√
2

128 )
0 |‖u− uh‖|0,1 4.092e-1 2.184e-1 1.117e-1 5.628e-2 2.823e-2

Cvge. Rate - 0.9 1.0 1.0 1.0
|‖u− uh‖|∞,0 2.039e-2 5.358e-3 1.359e-3 3.411e-4 8.537e-5
Cvge. Rate - 1.9 2.0 2.0 2.0

h |‖u− uh‖|0,1 5.407e-1 3.061e-1 1.576e-1 7.757e-2 3.772e-2
Cvge. Rate - 0.8 1.0 1.0 1.0
|‖u− uh‖|∞,0 7.055e-2 3.275e-2 1.524e-2 7.178e-3 3.443e-3
Cvge. Rate - 1.1 1.1 1.1 1.1

h3/2 |‖u− uh‖|0,1 4.337e-1 2.259e-1 1.135e-1 5.668e-2 2.831e-2
Cvge. Rate - 0.9 1.0 1.0 1.0
|‖u− uh‖|∞,0 3.782e-2 1.176e-2 3.632e-3 1.138e-3 3.649e-4
Cvge. Rate - 1.7 1.7 1.7 1.6

h2 |‖u− uh‖|0,1 4.124e-1 2.188e-1 1.117e-1 5.629e-2 2.823e-2
Cvge. Rate - 0.9 1.0 1.0 1.0
|‖u− uh‖|∞,0 2.613e-2 6.793e-3 1.709e-3 4.256e-4 1.058e-4
Cvge. Rate - 1.9 2.0 2.0 2.0

Table 6.1: Approximation errors and experimental convergence rates for Example 1.

Example 2. In this example, taken from [24], we consider the approximation of u(x, y, t) satisfying

∂u

∂t
− k4u + b · ∇u = f in Ω× (0, T ] , (6.1)

for k = 0.0001, b = [−4y, 4x]T , and Ω = (−0.5, 0.5)× (−0.5, 0.5). For the solution we use

u(x, y, t) =
2σ2

2σ2 + 4kt
exp

(
−(x̄ + 0.25)2 + ȳ2

2σ2 + 4kt

)
, (6.2)
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with x̄ = x cos(4t) + y sin(4t), ȳ = −x sin(4t) + y cos(4t) and σ = 0.0477. The initial and boundary
conditions used are given by u0(x, y) = u(x, y, 0), and u(x, y, t)|∂Ω = u(x, y, t) ≈ 0. The solution
represents a Gaussian pulse being convected in a rotating velocity field. Table 6.2 lists the errors
in the numerical approximation and the experimental convergence rates. The approximation is
illustrated in Figures 6.1–6.4, for h =

√
2/64 and δ = h2.

θ = 1−√2/2 Time T = 0.3

δ ↓ (∆t, h) → ( 1
10 ,

√
2

8 ) ( 1
20 ,

√
2

16 ) ( 1
40 ,

√
2

32 ) ( 1
80 ,

√
2

64 ) ( 1
160 ,

√
2

128 )
0 |‖u− uh‖|0,1 1.242e-0 7.999e-1 3.394e-1 1.543e-1 7.604e-2

Cvge. Rate - 0.6 1.2 1.1 1.0
|‖u− uh‖|∞,0 8.114e-2 4.071e-2 1.127e-2 2.572e-3 6.338e-4
Cvge. Rate - 1.0 1.9 2.1 2.0

h |‖u− uh‖|0,1 9.445e-1 7.978e-1 5.932e-1 4.079e-1 2.637e-1
Cvge. Rate - 0.2 0.4 0.5 0.6
|‖u− uh‖|∞,0 6.609e-2 5.751e-2 4.353e-2 3.104e-2 2.057e-2
Cvge. Rate - 0.2 0.4 0.5 0.6

h3/2 |‖u− uh‖|0,1 9.899e-1 7.375e-1 3.912e-1 1.797e-1 8.356e-2
Cvge. Rate - 0.4 0.9 1.1 1.1
|‖u− uh‖|∞,0 6.619e-2 4.548e-2 2.135e-2 8.268e-3 3.003e-3
Cvge. Rate - 0.5 1.1 1.4 1.5

h2 |‖u− uh‖|0,1 1.076e-0 7.519e-1 3.428e-1 1.553e-1 7.616e-2
Cvge. Rate - 0.5 1.1 1.1 1.0
|‖u− uh‖|∞,0 7.102e-2 4.040e-2 1.281e-2 3.111e-3 7.702e-4
Cvge. Rate - 0.8 1.7 2.0 2.0

Table 6.2: Approximation errors and experimental convergence rates for Example 2.
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Figure 6.1: Example 2. Approximation uh at
t = 0.0
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Figure 6.2: Example 2. Approximation uh at
t = 0.1

Example 3. In this example we consider the problem of approximating the solution to a moving
front propagating through the domain, [2].

With k = 0.01, f = 0,

w(η, t) =
0.1A + 0.5B + C

A + B + C
,
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Figure 6.3: Example 2. Approximation uh at
t = 0.2
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Figure 6.4: Example 2. Approximation uh at
t = 0.3

A(η, t) = exp(−0.05(η − 0.5 + 4.95(t + 0.3))/k), B(η, t) = exp(−0.25(η − 0.5 + 0.75(t + 0.3))/k)

C(η) = exp(−0.5(η − 0.375)/k)

and b = [w(x, t), w(y, t)]T , u(x, y, t) satisfying (6.1) is given by

u(x, y, t) = w(x, t) w(y, t) .

The boundary conditions and initial determined by the true solution, as in Example 2.

This example does not satisfy the assumptions for Theorem 1, as ∇ · b 6= 0. Nonetheless, the
numerical results presented in Table 6.3 are consistent with those predicted in (4.13). Illustrated in
Figures 6.5–6.8 is the numerical approximation computed using h =

√
2/32 and δ = h3/2.
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Figure 6.5: Example 3. Approximation uh at
t = 0.0
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Figure 6.6: Example 3. Approximation uh at
t = 0.1
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θ = 1−√2/2 Time T = 0.3

δ ↓ (∆t, h) → ( 1
10 ,

√
2

8 ) ( 1
20 ,

√
2

16 ) ( 1
40 ,

√
2

32 ) ( 1
80 ,

√
2

64 ) ( 1
160 ,

√
2

128 )
0 |‖u− uh‖|0,1 5.193e-1 2.722e-1 1.301e-1 6.389e-2 3.163e-2

Cvge. Rate - 0.9 1.1 1.0 1.0
|‖u− uh‖|∞,0 4.032e-2 1.663e-2 6.805e-3 3.214e-3 1.576e-3
Cvge. Rate - 1.3 1.3 1.1 1.0

h |‖u− uh‖|0,1 4.775e-1 2.999e-1 1.684e-1 9.099e-2 4.761e-2
Cvge. Rate - 0.7 0.8 0.9 0.9
|‖u− uh‖|∞,0 4.693e-2 2.819e-2 1.580e-2 8.642e-3 4.561e-3
Cvge. Rate - 0.7 0.8 0.9 0.9

h3/2 |‖u− uh‖|0,1 4.659e-1 2.586e-1 1.267e-1 6.263e-2 3.113e-2
Cvge. Rate - 0.8 1.0 1.0 1.0
|‖u− uh‖|∞,0 4.054e-2 1.730e-2 6.900e-3 3.114e-3 1.503e-3
Cvge. Rate - 1.2 1.3 1.1 1.1

h2 |‖u− uh‖|0,1 4.867e-1 2.656e-1 1.289e-1 6.362e-2 3.156e-2
Cvge. Rate - 0.9 1.0 1.0 1.0
|‖u− uh‖|∞,0 3.975e-2 1.644e-2 6.704e-3 3.175e-3 1.565e-3
Cvge. Rate - 1.3 1.3 1.1 1.0

Table 6.3: Approximation errors and experimental convergence rates for Example 3.
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Figure 6.7: Example 3. Approximation uh at
t = 0.2
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Figure 6.8: Example 3. Approximation uh at
t = 0.3

References

[1] U.M. Ascher, S.J. Ruuth, and B.T.R. Wetton. Implicit–explicit methods for time-dependent
PDE’s. SIAM J. Numer. Anal., 32:797–823, 1995.

[2] M. Berzins. Temporal error control for convection-dominated equations in two space dimensions.
SIAM J. Sci. Comput., 16(3):558–580, 1995.

[3] J.C. Chrispell, V.J. Ervin, and E.W. Jenkins. A fractional step θ-method for convection-
diffusion problems. Technical Report TR2006 11 CEJ, Clemson University, 2006.

13



[4] C.N. Dawson. Godunov-mixed methods for advection-diffusion equations in multidimensions.
SIAM J. Numer. Anal., 30:1315–1332, 1993.

[5] C.N. Dawson and M.F. Wheeler. Time-splitting methods for advection-diffusion-reaction equa-
tions arising in contaminant transport. In ICIAM 91 (Washington, DC, 1991), pages 71–82.
SIAM, Philadelphia, PA, 1992.

[6] V.J. Ervin and W.J. Layton. A robust and parallel relaxation method based on algebraic
splittings. Numer. Meth. Part. Diff. Eq., 15:91–110, 1999.

[7] M.S. Espedal and K.H. Karlsen. Numerical solution of reservoir flow models based on large
time step operator splitting algorithms. In Filtration in porous media and industrial application
(Cetraro, 1998), volume 1734 of Lecture Notes in Math., pages 9–77. Springer, Berlin, 2000.

[8] S. Evje and K.H. Karlsen. Viscous splitting approximation of mixed hyperbolic-parabolic
convection-diffusion equations. Numer. Math., 83(1):107–137, 1999.

[9] R. Glowinski and J. Periaux. Numerical methods for nonlinear problems in fluid dynamics.
Proc. Intern. Seminar on Scientific Supercomputers, Paris, Feb. 2-6:North–Holland, 1987.

[10] J.G. Heywood and R. Rannacher. Finite-element approximation of the nonstationary Navier-
Stokes problem Part IV: Error analysis for second-order time discretization. SIAM J. Numer.
Anal., 27:353–384, 1990.

[11] W. Hundsdorfer and J.G. Verwer. Numerical Solution of Time–Dependent Advection–Diffusion–
Reaction Equations. Springer-Verlag, New York, NY, 2003.

[12] V. John. Large Eddie Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES models. Springer-Verlag, Berlin, 1999.

[13] C. Johnson. Numerical Solutions of Partial Differential Equations by the Finite Element
Method. Cambridge University Press, New York, NY, 1987.

[14] J. Douglas Jr. Alternating direction methods for three space variables. Numer. Math., 4:41–63,
1962.

[15] L.A. Khan and P.L.-F. Liu. Numerical analyses of operator-splitting algorithms for the two-
dimensional advection-diffusion equation. Comput. Methods Appl. Mech. Engrg., 152(3-4):337–
359, 1998.
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