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Abstract. The numerical simulation of viscoelastic fluid flow becomes more difficult as a physical
parameter, the Weissenberg number, increases. Specifically, at a Weissenberg number larger than
a critical value, the iterative nonlinear solver fails to converge. In this paper a two-parameter
defect-correction method for viscoelastic fluid flow is presented and analyzed. In the defect step the
Weissenberg number is artificially reduced to solve a stable nonlinear problem. The approximation is
then improved in the correction step using a linearized correction iteration. Numerical experiments
support the theoretical results and demonstrate the effectiveness of the method.
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1 Introduction

The numerical simulation of viscoelastic fluid flows is a difficult nonlinear problem. This is due
mainly to (i) the number of unknowns required for an accurate computation over the problem
domain, and (ii) the hyperbolic, nonlinear character of the constitutive equation for the stress.
In addition, as the Weissenberg number increases, boundary layers for the stress develop which
add to the difficulty of computing accurate numerical approximations. A common difficulty for
approximation algorithms is that for high Weissenberg numbers the nonlinear iteration used to
compute the approximation fails to converge. Therefore, there has been considerable interest by
researchers over the years in developing stable numerical algorithms for high Weissenberg number
flows.

One approach for the numerical approximation of difficult nonlinear problems is defect-correction
methods [1]. A defect-correction method has two basic steps. The first step uses a stable, nearby
problem to form an initial approximation to the solution of the original given problem. The second
step (correction step) iteratively improves the defected approximation using residual corrections.
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defect-correction methods have been applied convection-diffusion problems [2, 3, 4] as well as to
handle difficulties in computing solutions to the Navier-Stokes equations for high Reynolds number
[5, 6].

For viscoelastic fluid flows, in [7] Lee presented a method in which the defect step consisted of solving
the nonlinear problem for a reduced Weissenberg number on the convective term in the constitutive
equation. In the corrector step an iterative, linear residual correction algorithm was used. The
error estimate showed that the defect-correction method preserved the optimal order of convergence
for the discretization scheme. In [8], a defect-correction method was applied to the linear Oseen-
viscoelastic model problem. This approach, in the defect step, reduced the Weissenberg number
independently on both the convective and stress-deformation interaction terms in the constitutive
equation. Again an iterative linear corrector was used.

This manuscript extends the work of [7] and [8]. Specifically, a two-parameter defect-correction algo-
rithm for steady-state viscoelastic fluid flows obeying the nonlinear Johnson-Segalman constitutive
model is investigated. To compute solutions for a Weissenberg number larger than the critical value,
the original problem is defected by reducing the Weissenberg number to form a nearby, stable prob-
lem. These defect parameters can be chosen independently of each other. The initial approximation
is then corrected with a linear iteration which, upon convergence, solves the original undefected
problem.

The continuation method [9, 10, 11] can be viewed as an extension of the defect-correction method.
In the continuation method, a parameter in the equations is incrementally increased as computations
proceed from a readily computable solution to a desired solution. For applications to viscoelastic
fluid flow, the Weissenberg number is often used as the continuation parameter ([12, 13, 14, 15, 16,
17, 18] are some examples). General convergence of continuation methods for viscoelastic fluid flow
problems is still an open question.

This paper is organized as follows. In Section 2 the continuous problem and a variational for-
mulation are described in an appropriate setting. A corresponding finite element approximation
using the discontinuous Galerkin method is described in Section 3. In Section 4 we present the
defect-correction algorithm and show convergence properties of the method. An alternate corrector
iteration is also discussed. In Section 5 numerical results are presented to demonstrate the accuracy
and effectiveness of the method.

2 Problem Description

Let Ω be a bounded domain in IRd, d = 2 or 3, with the Lipschitz continuous boundary Γ. Con-
sider the viscoelastic (inertialess) fluid flow problem subject to the Johnson-Segalman constitutive
equations

σ + λ(u · ∇)σ + λga(σ,∇u) − 2 αD(u) = 0 in Ω , (2.1)

−∇ · σ − 2(1 − α)∇ · D(u) + ∇p = f in Ω , (2.2)

div u = 0 in Ω , (2.3)

u = 0 on Γ. (2.4)
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In (2.1)-(2.4) σ denotes the rank 2 (symmetric) polymeric stress tensor, u the velocity vector, p the
pressure of fluid, and λ is the Weissenberg number (defined as the product of the relaxation time
of the fluid and a characteristic strain rate). The rank 2 tensor ∇u denotes the gradient of u with
components (∇u)i,j = ∂ui/∂xj (consistent with the definition used in [19, 20, 21]). Assume that p
has zero mean value over Ω. In (2.1) and (2.2), D(u) := (∇u + ∇uT )/2 is the rate of the strain
tensor, α ∈ (0, 1), and f the body force. In (2.1), ga(σ,∇u) is defined by

ga(σ,∇u) :=
1 − a

2
(σ∇u + ∇uT σ) − 1 + a

2
(∇uσ + σ∇uT )

for a ∈ [−1, 1].

Remark 2.1 For the case a = 1 the Johnson-Segalman model reduces to the well-known Oldroyd-B
model.

2.1 Continuous Problem

For D ⊂ Ω, denote the standard Sobolev spaces by Wm,p(D) with norms ‖·‖m,p,D if p < ∞, ‖·‖m,∞,D

if p = ∞. The Sobolev space Wm,2 is denoted by Hm with the norm ‖ · ‖m. The corresponding
space of vector-valued or tensor-valued functions is given by Hm. If D = Ω, D is omitted, i.e.,
(·, ·) = (·, ·)Ω and ‖ · ‖ = ‖ · ‖Ω .

Existence of a solution to the problem (2.1)-(2.4) was shown by Renardy [22] under a small data
assumption. (See also [23] and [24].) Specifically, if Ω has a C∞-smooth boundary and f is sufficiently
regular and small, the problem (2.1)-(2.4) admits a unique bounded solution (σ,u, p) ∈ H2(Ω) ×
H3(Ω) × H2(Ω).

2.2 Variational Formulation

Next we define the function spaces for the velocity u, the pressure p and the stress σ. Let

X := H1
0(Ω) = {v ∈ H1(Ω) : v = 0 on Γ} ,

S := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω q dΩ = 0} ,

Σ := (L2(Ω))d×d ∩ {τ = (τij) : τij = τji, u · ∇τ ∈ (L2(Ω))d×d} .

We also introduce the divergence free space

V = {v ∈ X :

∫

Ω
q div v dΩ = 0 ∀q ∈ S} .

The corresponding variational formulation of (2.1)-(2.4) is obtained by taking the inner product of
(2.1)-(2.3) with stress, velocity, and pressure test functions τ ,v, and q respectively. Specifically the
variational formulation is: Given f ∈ H−1(Ω), find (σ,u, p) ∈ Σ × X × S such that

(σ, τ ) + λ ((u · ∇)σ, τ ) + λ (ga(σ,∇u), τ ) − 2α(D(u), τ ) = 0 , ∀τ ∈ Σ , (2.5)

(σ, D(v)) + 2(1 − α)(D(u), D(v)) − (p,∇ · v) = (f ,v) , ∀v ∈ X , (2.6)

(q,∇ · u) = 0 , ∀q ∈ S . (2.7)
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Using the divergence free space V, the variational formulation (2.5)-(2.7) is equivalent to:

(σ, τ ) + λ ((u · ∇)σ, τ ) + λ (ga(σ,∇u), τ ) − 2α(D(u), τ ) = 0 , ∀τ ∈ Σ ,

(σ, D(v)) + 2(1 − α)(D(u),D(v)) = (f ,v) , ∀v ∈ V .

We introduce the bilinear form A defined on Σ × X by

A((σ,u), (τ ,v)) := (σ, τ ) − 2α(D(u), τ ) + 2α(σ,D(v)) + 4α(1 − α) (D(u),D(v)) . (2.8)

The continuity and coercivity of A is shown in the following lemma.

Lemma 2.1 The bilinear form A defined in (2.8) is continuous and coercive, i.e.,
a) (continuity) there exists a positive constant C such that

A((σ,u), (τ ,v)) ≤ C‖(σ,u)‖Σ×X
‖(τ ,v)‖Σ×X

, ∀(τ ,v) ∈ Σ × X,

b) (coercivity) there exists a positive constant C such that

A((σ,u), (σ,u)) ≥ C‖(σ,u)‖2
Σ×X

, ∀(σ,u) ∈ Σ × X.

Proof: The reader is referred to Lemma 1.1 of [7]. �

3 Finite Element Approximation

Let Th denote a triangulation of Ω such that Ω = {∪K : K ∈ Th}. Assume that there exist positive
constants c1, c2 such that

c1h ≤ hK ≤ c2ρK ,

where hK is the diameter of K, ρK is the diameter of the greatest ball included in K, and h =
maxK∈Th

hK .

Let Pk(K) denote the space of polynomials of degree less than or equal to k on K ∈ Th. As was
done in [7], define the following finite element spaces, (Taylor-Hood) for the approximation of (u, p):

Xh := {v ∈ X ∩ (C0(Ω))d : v|K ∈ P2(K)d, ∀K ∈ Th} ,

Sh := {q ∈ S ∩ C0(Ω) : q|K ∈ P1(K), ∀K ∈ Th} ,

Vh := {v ∈ Xh : (q,∇ · v) = 0, ∀q ∈ Sh} .

For the approximation of the constitutive equation (2.1) the discontinuous Galerkin method is used,
where the stress σ is approximated in the discontinuous finite element space of piecewise linears:

Σh := {τ ∈ Σ : τ |K ∈ P1(K)d×d, ∀K ∈ Th} .
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The finite element spaces defined above satisfy the standard approximation properties (see [20] or
[25]), i.e., there exists a constant C such that

inf
vh∈Xh

‖v − vh‖1 ≤ Ch2‖v‖3 , ∀v ∈ H3(Ω) , (3.1)

inf
qh∈Sh

‖q − qh‖0 ≤ Ch2‖q‖2 , ∀ q ∈ H2(Ω) , (3.2)

and
inf

τ h∈Σh

‖τ − τ h‖0 ≤ Ch2‖τ‖2 , ∀ τ ∈ H2(Ω) . (3.3)

It is also well known that the Taylor-Hood pair (Xh, Sh) satisfies the inf-sup (or LBB) condition
([20]),

inf
06=qh∈Sh

sup
06=vh∈Xh

(qh,∇ · vh)

‖vh‖1‖qh‖0
≥ C , (3.4)

where C is a positive constant independent of h.

Below some notation used in [19] is introduced to describe and analyze an approximate solution
obtained using the discontinuous Galerkin method. Let

Γh = {∪∂K, K ∈ Th} \ Γ ,

∂K−(u) := {x ∈ ∂K, u · n < 0} ,

where ∂K is the boundary of K and n is outward unit normal, and

τ±(u) := lim
ǫ→0±

τ (x + ǫu(x)) .

Also, let

(σ, τ )h :=
∑

K∈Th

(σ, τ )K ,

〈σ±, τ±〉h,u :=
∑

K∈Th

∫

∂K−(u)
(σ±(u) : τ±(u))|n · u| ds ,

〈〈σ±〉〉h,u := 〈σ±, σ±〉1/2
h,u ,

‖τ‖0,Γh :=




∑

K∈Th

‖τ‖2
0,∂K




1/2

,

for σ, τ ∈
∏

K∈Th

(L2(K))d×d , and

‖ξ‖m,h :=




∑

K∈Th

‖ξ‖2
m,K




1/2

,

for ξ ∈
∏

K∈Th

(Wm,2(K))d×d.
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Introduce the operator Bh on Xh × Σh × Σh defined by

Bh(uh, σh, τh) := ((uh · ∇)σh, τh)h +
1

2
(∇ · uhσh, τ h) + 〈σh+ − σh−, τh+〉h,uh . (3.5)

Note that the second term vanishes when ∇·uh = 0 (this is not necessarily the case for any uh ∈ Xh).
This extra term is used to obtain coercivity of Bh(uh, ·, ·). Using integration by parts, Bh may be
written as

Bh(uh, σh, τh) = −((uh · ∇)τ h, σh)h − 1

2
(∇ · uhτ h, σh) + 〈σh−, τ h− − τh+〉h,uh . (3.6)

Combining (3.5) and (3.6), we obtain

Bh(uh, σh, σh) =
1

2
〈σh+ − σh−, σh+ − σh−〉h,uh =

1

2
〈〈σh+ − σh−〉〉2h,uh ≥ 0 . (3.7)

The discontinuous Galerkin finite element approximation of (2.5)–(2.7) is then as follows. Given
f ∈ H−1(Ω), find (σh,uh, ph) ∈ Σh × Xh × Sh such that

(σh, τh) + λBh(uh, σh, τh) + λ(ga(σ
h,∇uh), τ h) − 2α(D(uh), τ h) = 0 , ∀τ h ∈ Σh , (3.8)

(σh,D(vh)) + 2(1 − α) (D(uh),D(vh)) − (ph,∇ · vh) = (f ,vh) , ∀vh ∈ Xh , (3.9)

(qh,∇ · uh) = 0 , ∀qh ∈ Sh . (3.10)

Existence of a solution to the discrete problem (3.8)-(3.10) has been shown by Baranger and San-
dri [19] under the assumption that the continuous problem (2.1)-(2.4) yields a bounded solution
(u, σ, p) ∈ H3(Ω) × H2(Ω) × H2(Ω). The error estimates

‖σ − σh‖0 + ‖∇(u − uh)‖0 ≤ Ch3/2, ‖p − ph‖0 ≤ Ch3/2

for constant C > 0, are also proven in [19].

Notice that, in view of (3.4), (3.8)-(3.10) is equivalent to: Given f ∈ H−1(Ω), find (σh,uh) ∈ Σh×Vh

such that

(σh, τh) + λBh(uh, σh, τ h) + λ(ga(σ
h,∇uh), τ h) − 2α(D(uh), τh) = 0 , ∀τ h ∈ Σh, (3.11)

(σh,D(vh)) + 2(1 − α) (D(uh),D(vh)) = (f ,vh) , ∀vh ∈ Vh. (3.12)

Using the bilinear form A defined by (2.8), (3.11)-(3.12) can equivalently be written as

A((σh,uh), (τ h,vh)) + λBh(uh, σh, τ h) + λ(ga(σ
h,∇uh), τh)

= 2α(f ,vh) ∀(τ h,vh) ∈ Σh × Vh . (3.13)

In the following analysis several inverse estimates are used. For convenience, these results are
summarized here. (See [20], [25]). Assume d = 2. For uh ∈ Vh and σh ∈ Σh, we have

‖uh‖∞ ≤ Ch−1/2‖uh‖0,4 , (3.14)

‖σh‖∞ ≤ Ch−1‖σh‖0 ,

‖∇σh‖0,4,h ≤ Ch−3/2‖σh‖0 ,

‖∇σh‖0,2,h ≤ Ch−1‖σh‖0 .
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The local inverse inequality ([26]),

‖σ‖2
0,∂K ≤ C

p2
K

hK
‖σ‖2

0,K ,

is used to bound the jump term of Bh, where pK denotes the polynomial degree on mesh element
K and hK the local mesh parameter.

4 Defect Correction Method

In this section the defect correction method used in computing the solution to (3.8)-(3.10) is de-
scribed. The idea behind the method is to avoid the approximation difficulties associated with a
high Weissenberg number, λ-difficult, by computing an initial approximation using a λ-easy value,
and then iteratively improving the approximation until the desired solution at λ = λ-difficult is
obtained.

4.1 Algorithm

To avoid the computational difficulties associated with the high Weissenberg number problem, re-
place λ in the second and third terms of (3.8) with the parameters λ and λ̃, respectively. These
defect parameters are chosen so that 0 ≤ λ, λ̃ ≤ λ. Let (σh

0 ,uh
0 , ph

0) ∈ Σh × Xh × Sh satisfy

(σh
0 , τh) + λBh(uh

0 , σh
0 , τ h) + λ̃(ga(σ

h
0 ,∇uh

0), τh) − 2α(D(uh
0), τh) = 0 , ∀τ h ∈ Σh ,

(σh
0 ,D(vh)) + 2(1 − α) (D(uh

0),D(vh)) − (ph
0 ,∇ · vh) = (f ,vh) , ∀vh ∈ Xh ,

(qh,∇ · uh
0) = 0 , ∀qh ∈ Sh .

Then the residuals (R1, R2, R3) ∈ Σh × Xh × Sh for equations (3.8)-(3.10) are defined by
(
R1(u

h
0 , σh

0), τ h
)

:= −(σh
0 , τh) − λBh(uh

0 , σh
0 , τ h) − λ(ga(σ

h
0 ,∇uh

0), τ h) + 2α(D(uh
0), τh) , ∀τ h ∈ Σh , (4.1)

(
R2(u

h
0 , σh

0 , ph
0),vh

)

:= (f ,vh) − (σh
0 ,D(vh)) − 2(1 − α)(D(uh

0),D(vh
0 )) + (ph

0 ,∇ · vh) , ∀vh ∈ Xh , (4.2)

(
R3(u

h
0), qh

)
:= −(qh,∇ · uh

0) , ∀qh ∈ Sh . (4.3)

We define the correction (ξh
0 , ǫh

0 , ρh
0) ∈ Σh × Xh × Sh to the approximation (σh

0 ,uh
0 , ph

0) via

(ξh
0 , τh) + λBh(uh

0 , ξh
0 , τh) + λ̃(ga(ξ

h
0 ,∇uh

0), τ h) − 2α(D(ǫh
0), τ h))

=
(
R1(u

h
0 , σh

0), τ h
)

, ∀τ h ∈ Σh , (4.4)

(ξh
0 ,D(vh)) + 2(1 − α)(D(ǫh

0),D(vh)) − (ρh
0 ,∇ · vh) =

(
R2(u

h
0 , σh

0 , ph
0),vh

)
, ∀vh ∈ Xh, (4.5)

(qh,∇ · ǫh
0) =

(
R3(u

h
0), qh

)
, ∀qh ∈ Sh . (4.6)
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The update (σh
1 ,uh

1 , ph
1) := (σh

0 + ξh
0 ,uh

0 + ǫh
0 , ph

0 + ρh
0) is expected to be a better approximation to

(σh,uh, ph) than (σh
0 ,uh

0 , ph
0). Note that combining (4.1)-(4.3) with (4.4)-(4.6), (σh

1 ,uh
1 , ph

1) satisfies:

(σh
1 , τ h) + λBh(uh

0 , σh
1 , τh) + λ̃(ga(σ

h
1 ,∇uh

0), τ h) − 2α(D(uh
1), τ h))

= −(λ − λ)Bh(uh
0 , σh

0 , τ h) − (λ − λ̃)(ga(σ
h
0 ,∇uh

0), τ h) , ∀τ h ∈ Σh ,

(σh
1 ,D(vh)) + 2(1 − α)(D(uh

1),D(vh)) − (ph
1 ,∇ · vh) = (f ,vh) , ∀vh ∈ Xh ,

(qh,∇ · uh
1) = 0 , ∀qh ∈ Sh .

The second step can be repeated with (σh
0 ,uh

0 , ph
0) replaced by (σh

1 ,uh
1 , ph

1) to further improve the
approximation. The defect-correction method is summarized in Algorithm 4.1.

Algorithm 4.1 (Defect-Correction Method for the Johnson-Segalman model)

Step 1: Solve the nonlinear defected problem: Find (σh
0 ,uh

0 , ph
0) ∈ Σh × Xh × Sh such that

(σh
0 , τ h) + λBh(uh

0 , σh
0 , τh) + λ̃(ga(σ

h
0 ,∇uh

0), τ h) − 2α(D(uh
0), τ h) = 0 , ∀τ h ∈ Σh ,

(σh
0 ,D(vh)) + 2(1 − α) (D(uh

0),D(vh)) − (ph
0 ,∇ · vh) = (f ,vh) , ∀vh ∈ Xh ,

(qh,∇ · uh
0) = 0 , ∀qh ∈ Sh ,

where λ and λ̃ are chosen to be less than or equal to λ.

Step 2: For i = 0, 1, 2, . . . , solve the following problem for the correction: Find (σh
i+1,u

h
i+1, p

h
i+1) ∈

Σh × Xh × Sh such that

(σh
i+1, τ

h) + λBh(uh
i , σh

i+1, τ
h) + λ̃(ga(σ

h
i+1,∇uh

i ), τ h) − 2α(D(uh
i+1), τ

h))

= −(λ − λ)Bh(uh
i , σh

i , τh) − (λ − λ̃)(ga(σ
h
i ,∇uh

i ), τh) , ∀τ h ∈ Σh ,

(σh
i+1,D(vh)) + 2(1 − α)(D(uh

i+1),D(vh)) − (ph
i+1,∇ · vh) = (f ,vh) , ∀vh ∈ Xh ,

(qh,∇ · uh
i+1) = 0 , ∀qh ∈ Sh .

4.2 Analysis of the Defect Step

Assume (σ,u, p) is an exact solution of (2.5)-(2.7) (the undefected continuous problem). Also let
(σ,u, p) be an exact solution of (2.5)-(2.7) with the first λ replaced with λ and the second λ replaced
with λ̃ (the defected continuous problem). Let M be given by

M := max{‖σ‖2, ‖u‖3, ‖p‖2, ‖σ‖2 ‖u‖3, ‖p‖2}.

Lemma 4.1 Let λ = λ − K1h
3/2 and λ̃ = λ − K2h

3/2 where 0 ≤ K1h
3/2, K2h

3/2 ≤ λ. If there
exists an M such that the undefected continuous problem (2.5)-(2.7) admits a bounded solution
(σ,u, p) ∈ H2(Ω) × H3(Ω) × (H2(Ω) ∩ L2

0(Ω)), then for h sufficiently small, for all h ≤ h0, then
Step 1 of Algorithm 4.1 admits a solution (σh

0 ,uh
0 , ph

0) ∈ Σh × Xh × Sh and there exists a constant
C1 such that

‖σ − σh
0‖0 + ‖∇(u − uh

0)‖0 ≤ C1h
3/2. (4.7)
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Proof: From the embedding properties of Sobolev spaces [27] there exists a constant CM such
that

‖v‖0,4 ≤ CM‖∇v‖0,2 , ∀v ∈ H1
0(Ω) ,

‖v‖0,∞ ≤ CM‖v‖2,2 , ∀v ∈ H2(Ω) . (4.8)

Existence of a solution to Step 1 is shown by Baranger and Sandri [19]. For the proof of (4.7), let
(σ,u, p) be a solution of (2.5)-(2.7) with the first λ replaced with λ and the second λ replaced with
λ̃. Then, from [19], we have that

‖σ − σh
0‖0 + ‖∇(u − uh

0)‖0 ≤ C̃h3/2, (4.9)

for some positive constant C̃. Note that the solution (σ,u) satisfies the equations

(σ, τ ) + λ (u · ∇)σ, τ ) + λ̃ (ga(σ,∇u), τ ) − 2α(D(u), τ ) = 0 , ∀τ ∈ Σ ,

(σ,D(v)) + 2(1 − α)(D(u),D(v)) = (f ,v) , ∀v ∈ V .

To show the stated result, we obtain an estimation for ‖∇(u−u)‖0 and ‖σ−σ‖0. In fact, as shown
in Lemma 4.2 of [28], we have

‖σ − σ‖2
0 + ‖∇(u − u)‖2

0 ≤ C2
0h3, (4.10)

where

C2
0 = M4C2

M (K1CM +8K2)
2/ min

{
3

4
−M

2

(
λC2

M + 24λ̃CM

)
, 4α(1−α)−M

2

(
λC2

M + 8λ̃CM

)}
.

Thus, (4.7) follows from (4.9) and (4.10). �

4.3 Analysis of the Correction Step

Step 1 of Algorithm 4.1 produces an initial approximation (σh
0 ,uh

0) ∈ Σh × Vh that is the solution
of the stable defected problem. This approximation is within a certain radius of the solution to
the undefected problem. Step 2 of the algorithm provides an iterative procedure for correcting this
initial iterate to an approximate solution of the original undefected problem. When convergent
the computed approximation (σh,uh) will satisfy the same error estimates shown by Baranger and
Sandri [19], namely (4.7) with (σh

0 ,uh
0) replaced by (σh,uh).

Let the nonempty ball Bh ⊂ Σh × Vh, centered at (σ,u), be defined by

Bh =
{

(τ h,vh) ∈ Σh × Vh : ‖σ − τ h‖0, ‖∇(u − vh)‖0 ≤ Ch3/2
}

. (4.11)

To show Step 2 of the algorithm converges, we construct a mapping Φ : Bh → Σh × Vh such that
Φ(σh

i ,uh
i ) = (σh

i+1,u
h
i+1) where (σh

i+1,u
h
i+1) satisfies

(σh
i+1, τ

h) + λBh(uh
i , σh

i+1, τ
h) + λ̃(ga(σ

h
i+1,∇uh

i ), τ h) − 2α(D(uh
i+1), τ

h)

= −(λ − λ)Bh(uh
i , σh

i , τ h) − (λ − λ̃)(ga(σ
h
i ,∇uh

i ), τ h) ∀τ h ∈ Σh , (4.12)

(σh
i+1,D(vh)) + 2(1 − α)(D(uh

i+1),D(vh)) = (f ,vh) ∀vh ∈ Vh . (4.13)

9



The proof is similar in structure to that in [19] for a different iteration operator Φ and consists of
three parts,

1. Show Φ is well defined and bounded on bounded sets.

2. Show Φ is continuous.

3. Show that Φ(Bh) ⊂ Bh.

Then Brouwer’s fixed-point theorem guarantees the existence of a fixed point (σh,uh) ∈ Bh of Φ
satisfying

‖σ − σh‖0 + ‖∇(u − uh)‖0 ≤ Ch3/2.

We begin with some preliminary bounds.

Lemma 4.2 Let uh
0 satisfy

‖∇(u − uh
0)‖0 ≤ C0h

3/2

for some constant C0. Then the quantities ‖uh
0‖∞ and ‖∇uh

0‖∞ are bounded.

Proof: Note that if ũh ∈ Vh is defined by

(∇(u − ũh),∇vh) = 0 ∀vh ∈ Vh ,

then standard approximation results ([20]) imply that

‖∇(u − ũh)‖0 ≤ C h2 ‖u‖3 , (4.14)

and
‖∇(u − ũh)‖1,4 ≤ C h ‖u‖2,4 , (4.15)

for some constant C. Using (3.14), (4.14), (4.15) and the imbedding theorem of W 1,4 in L∞, H1 in
L4, we have

‖uh
0‖∞ ≤ ‖u‖∞ + ‖u − ũh‖∞ + ‖ũh − uh

0‖∞
≤ C

[
M + ‖u − ũh‖1,4 + h−1/2‖ũh − uh

0‖0,4

]

≤ C
[
M + h‖u‖2,4 + h−1/2(‖∇(ũh − u)‖0 + ‖∇(u − uh

0)‖0)
]

≤ C
[
M + Mh + Mh3/2 + C0h

]
.

The boundedness of ‖∇uh
0‖∞ is established similarly. �

Note that we can write (4.12)-(4.13) as

Ã(uh
i , (σh

i+1,u
h
i+1), (τ

h,vh)) + λBh(uh
i , σh

i+1, τ
h) = F ((σh

i ,uh
i ), (τ h,vh)) ,
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where

Ã(uh
i , (σh

i+1,u
h
i+1), (τ

h,vh)) = (σh
i+1, τ

h) + λ̃(ga(σ
h
i+1,∇uh

i ), τ h) − 2α(D(uh
i+1), τ

h)

+ 2α(σh
i+1,D(vh)) + 4α(1 − α)(D(uh

i+1),D(vh)),

Bh(uh
i , σh

i+1, τ
h) = ((uh

i · ∇)σh
i+1, τ

h)h +
1

2
(∇ · uh

i σh
i+1, τ

h)

+ 〈σh+

i+1 − σh−

i+1, τ
h+〉h,uh

i

,

F ((σh
i ,uh

i ), (τ h,vh)) = 2α(f ,vh) − (λ − λ)Bh(uh
i , σh

i , τh)

− (λ − λ̃)(ga(σ
h
i ,∇uh

i ), τh).

Now we will discuss the three properties for Φ. For the proof of the three properties for all i = 0, 1, . . .,
it is sufficient to show each property holds for i = 0. The reader is referred to [28] for most of the
technical details of the proofs to follow.

Lemma 4.3 Assume M and λ̃ satisfy

1 − 4λ̃C∗M > 0 (4.16)

where C∗ is given by
‖∇uh

0‖∞ ≤ C(2M + Mh + Ch1/2) ≤ C∗M.

Then Φ is well-defined and bounded on bounded sets.

Proof: Proof of the coercivity of Ã and Bh, and that Φ is bounded on bounded sets is shown in
Lemma 4.4 of [28]. In particular, we have

Ã(uh
0 , (σh

1 ,uh
1), (σh

1 ,uh
1)) ≥ (1 − 4λ̃C∗M)‖σh

1‖2
0 + 4α(1 − α)‖D(uh

1)‖2
0 . (4.17)

�

Lemma 4.4 Assume 1 − 4λC∗M > 0. Then Φ is continuous on Bh.

Proof: To show Φ is continuous, we want to show that if Φ(σh
0 ,uh

0) = (σh
1 ,uh

1) and Φ(τ h
0 ,vh

0 ) =
(τ h

1 ,vh
1 ), then

‖(σh
1 − τ h

1 ,uh
1 − vh

1 )‖
Σ

h
×Vh

≤ Cη(h, σh
0 , τh

0 ,uh
0 ,vh

0 ) ,

where
lim

(τ h

0
,vh

0
)→(σh

0
,uh

0
)
η(h, σh

0 , τh
0 ,uh

0 ,vh
0 ) = 0.

For ease of notation the superscript h is suppressed on the variables σh, τh,uh,vh in the remainder
of this proof. Now Φ(σ0,u0) = (σ1,u1) implies

Ã(u0, (σ1,u1), (τ ,v)) + λBh(u0, σ1, τ ) = F ((σ0,u0), (τ ,v)) , ∀(τ ,v) ∈ Bh (4.18)
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and Φ(τ 0,v0) = (τ 1,v1) implies

Ã(v0, (τ 1,v1), (τ ,v)) + λBh(v0, τ 1, τ ) = F ((τ 0,v0), (τ ,v)) , ∀(τ ,v) ∈ Bh. (4.19)

Subtracting (4.19) from (4.18) and rearranging we obtain

Ã(u0, (σ1 − τ 1,u1 − v1), (τ ,v)) + λBh(u0, σ1 − τ 1, τ )

= −(λ − λ)
[
Bh(u0, σ0, τ ) − Bh(v0, τ 0, τ )

]

− (λ − λ̃) [(ga(σ0,∇u0), τ ) − (ga(τ 0,∇v0), τ )]

− λ
[
Bh(u0, τ 1, τ ) − Bh(v0, τ 1, τ )

]

− λ̃ (ga(τ 1,∇(u0 − v0)), τ ) , ∀(τ ,v) ∈ Bh. (4.20)

Let τ = σ1 − τ 1 and v = u1 − v1. Then (4.20), (4.17) and the assumption on 1 − 4λ̃C∗M implies

C‖(σ1 − τ 1,u1 − v1)‖2

Σ
h
×Vh

≤ − (λ − λ)
[
Bh(u0, σ0, σ1 − τ 1) − Bh(v0, τ 0, σ1 − τ 1)

]

− (λ − λ̃) [(ga(σ0,∇u0), σ1 − τ 1) − (ga(τ 0,∇v0), σ1 − τ 1)]

− λ
[
Bh(u0, τ 1, σ1 − τ 1) − Bh(v0, τ 1, σ1 − τ 1)

]

− λ̃(ga(τ 1,∇(u0 − v0)), σ1 − τ 1). (4.21)

For notational simplicity, let

σ̂0 = σ0 − τ 0, σ̂1 = σ1 − τ 1, û0 = u0 − v0, û1 = u1 − v1.

Then (4.21) can be written as

C‖(σ̂1, û1)‖2

Σ
h
×Vh

≤ − (λ − λ)
[
Bh(u0, σ̂0, σ̂1) + Bh(u0, τ 0, σ̂1) − Bh(v0, τ 0, σ̂1)

]

− (λ − λ̃) [(ga(σ0,∇u0), σ̂1) − (ga(τ 0,∇v0), σ̂1)]

− λ
[
Bh(u0, τ 1, σ̂1) − Bh(v0, τ 1, σ̂1)

]
− λ̃(ga(τ 1,∇û0), σ̂1). (4.22)

Each of the terms on the right-hand side of (4.22) can be shown to go to zero as (τ 0,v0) goes to
(σ0,u0), for a fixed h (Lemma 4.5 of [28]). Thus Φ is continuous on Bh. �

The proof that Φ(Bh) ⊂ Bh is similar to the proof of Theorem 4.1 in [7]. Several labelled constants
are used in the data conditions below, the reader is referred to Lemma 4.6 of [28] for their origin.

Lemma 4.5 There exists constants C and δ such that if h and M ≤ C are small enough to satisfy
(4.16),

Ch1/2 ≤ M,

C ′M ≤ C/4,

and

C

δ




2
(
2λM + λ̃M

)2

(1 − 4λ̃C∗M)
+

h

2α(1 − α)
+ λM




1/2

≤ 1 , (4.23)

then Φ(Bh) ⊂ Bh.
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Proof: If σ̃h ∈ Σh is the orthogonal projection of σ on T h in Σ, and ũh ∈ Vh is defined by

(∇(u − ũh),∇vh) = 0 ∀vh ∈ Vh ,

then standard approximation results ([20]) imply that there exists a constant C ′ such that

‖∇(u − ũh)‖0 ≤ C ′ h2‖u‖3 , (4.24)

‖σ − σ̃h‖0 + h‖∇(σ − σ̃h)‖0 ≤ C ′h2‖σ‖2 ,

‖σ − σ̃h‖0,Γh ≤ C ′h3/2‖σ‖2 .

Assuming h < 1 and C ′M ≤ C/4 guarantees that

‖σ − σ̃h‖0 + ‖∇(u − ũh)‖0 ≤ C

2
h2 ≤ C

2
h3/2, (4.25)

thus (σ̃h, ũh) ∈ Bh.

To prove Φ(Bh) ⊂ Bh, we show that, given (σh
0 ,uh

0) ∈ Bh, Φ(σh
0 ,uh

0) = (σh
1 ,uh

1) ∈ Bh. Let
(σh

0 ,uh
0) ∈ Bh. Then,

‖σ − σh
0‖0 + ‖∇(u − uh

0)‖0 ≤ Ch3/2 ,

and Lemma 4.2 implies that

‖uh
0‖∞ ≤ C

[
M + Mh + Mh3/2 + Ch

]

and
‖∇uh

0‖∞ ≤ C
[
2M + Mh + Ch1/2

]
.

The assumption of Ch1/2 ≤ M then implies the existence of a constant Cu such that

‖uh
0‖∞ ≤ CuM and ‖∇uh

0‖∞ ≤ CuM.

Since (σ,u, p) satisfies (2.5)-(2.7), we have

A((σ,u), (τ h,vh)) + λ(u · ∇σ, τ h) + λ(ga(σ,∇u), τ h) − (p,∇ · vh)

= 2α(f ,vh) , ∀(τ h,vh) ∈ Σh × Vh . (4.26)

and, since ∇ · u = 0 and σ is continuous

Bh(u, σ, τ h) = ((u · ∇)σ, τ h)h = ((u · ∇)σ, τ h).

Also, Bh(·, σ, ·) can be treated as a bilinear form (since the jump term vanishes when the second
argument in Bh(·, ·, ·) is continuous). Now (σh

1 ,uh
1) = Φ(σh

0 ,uh
0) satisfies the relation

A((σh
1 ,uh

1), (τ h,vh)) + λBh(uh
0 , σh

1 , τ h) + λ̃(ga(σ
h
1 ,∇uh

0), τh)

= 2α(f ,v) − (λ − λ)Bh(uh
0 , σh

0 , τh)

− (λ − λ̃)(ga(σ
h
0 ,∇uh

0), τh) , ∀(τ h,vh) ∈ Σh × Vh . (4.27)
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Subtracting (4.27) from (4.26) yields

A((σ − σh
1 ,u − uh

1), (τ h,vh))

+ λ
(
Bh(u, σ, τ h) − Bh(uh

0 , σh
1 , τh)

)
+ (λ − λ)Bh(u, σ, τ h)

+ λ̃
(
(ga(σ,∇u), τ h) − (ga(σ

h
1 ,∇uh

0), τ h)
)

+ (λ − λ̃)(ga(σ,∇u), τ h) − (p,∇ · vh)

= (λ − λ)Bh(uh
0 , σh

0 , τ h) + (λ − λ̃)(ga(σ
h
0 ,∇uh

0), τ h) , ∀(τ h,vh) ∈ Σh × Vh .

i.e.,

A((σ − σ̃h,u − ũh), (τ h,vh)) + A((σ̃h − σh
1 , ũh − uh

1), (τ h,vh))

+ λ
(
Bh(u, σ, τ h) + Bh(uh

0 , σ̃h − σh
1 , τh) − Bh(uh

0 , σ̃h, τh)
)

+ (λ − λ)Bh(u, σ, τ h)

+ λ̃
(
(ga(σ,∇u), τ h) + ga(σ̃

h − σh
1 ,∇uh

0), τ h) − (ga(σ̃
h,∇uh

0), τ h)
)

+ (λ − λ̃)(ga(σ,∇u), τ h) − (p,∇ · vh)

= (λ − λ)Bh(uh
0 , σh

0 , τh) + (λ − λ̃)(ga(σ
h
0 ,∇uh

0), τh) , ∀(τ h,vh) ∈ Σh × Vh . (4.28)

Rearranging (4.28) we obtain

A((σ̃h − σh
1 ,ũh − uh

1), (τ h,vh))

+ λBh(uh
0 , σ̃h − σh

1 , τ h) + λ̃(ga(σ̃
h − σh

1 ,∇uh
0), τ h)

= −A((σ − σ̃h,u − ũh), (τ h,vh))

+ λ
(
Bh(uh

0 , σ̃h, τh) − Bh(u, σ, τ h)
)

+ λ̃
(
(ga(σ̃

h,∇uh
0), τ h) − (ga(σ,∇u), τ h)

)

+ (λ − λ)
(
Bh(uh

0 , σh
0 , τh) − Bh(u, σ, τ h)

)

+ (λ − λ̃)
(
(ga(σ

h
0 ,∇uh

0), τ h) − (ga(σ,∇u), τ h)
)

+ (p − qh,∇ · vh) , ∀(τ h,vh, qh) ∈ Σh × Vh × Sh . (4.29)

Let τh = σ̃h − σh
1 and vh = ũh − uh

1 . For ease of notation, let σ̂ = σ̃h − σh
1 and û = ũh − uh

1 .
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Using (3.7) and Lemma 4.3, from (4.8) and (4.29) we have

(1 − 4λ̃C∗M)‖σ̂‖2
0 + 4α(1 − α)‖∇û‖2

0+
λ

2
〈〈σ̂+ − σ̂−〉〉2

h,uh

0

≤ Ã(uh
0 , (σ̂, û),(σ̂, û)) + λBh(uh

0 , σ̂, σ̂)

= −A((σ − σ̃h,u − ũh), (σ̂, û))

+ λ
(
Bh(uh

0 , σ̃h, σ̂) − Bh(u, σ, σ̂)
)

+ λ̃
(
(ga(σ̃

h,∇uh
0), σ̂) − (ga(σ,∇u), σ̂)

)

+ (λ − λ)
(
Bh(uh

0 , σh
0 , σ̂) − Bh(u, σ, σ̂)

)

+ (λ − λ̃)
(
(ga(σ

h
0 ,∇uh

0), σ̂) − (ga(σ,∇u), σ̂)
)

+ (p − qh,∇ · û) .

Each of the terms in the right-hand side above can be bounded (see [28] for details). From (4.98)
of [28], we have

(1 − 4λ̃C∗M)‖σ̂‖2
0 + 4α(1 − α)‖∇û‖2

0 +
λ

2
〈〈σ̂+ − σ̂−〉〉2

h,uh

0

≤ Ã(uh
0 , (σ̂, û), (σ̂, û)) + λBh(uh

0 , σ̂, σ̂)

≤
(

C3λ(CM + M2) + C4λ̃CM

)
h3/2‖σ̂‖0

+ (C2 + C7) Mh2‖∇û‖0

+ C3λC1/2
u M3/2h3/2〈〈σ̂+ − σ̂−〉〉h,uh

0
. (4.30)

Thus (4.30), (4.16), Young’s inequality, and M ≤ C implies

1

2
(1 − 4λ̃C∗M)‖σ̂‖2

0 + 2α(1 − α)‖∇û‖2
0 +

λ

4
〈〈σ̂+ − σ̂−〉〉2

h,uh

0

≤




2
(
2C3λM + C4λ̃M

)2

(1 − 4λ̃C∗M)
+

h (C2 + C7)
2

2α(1 − α)
+ λ

(
C3C

1/2
u M1/2

)2




C
2

4
h3. (4.31)

Let δ be given by

2δ2 = min

{
1

2
(1 − 4λ̃C∗M), 2α(1 − α)

}
.

Then, (4.31) implies

(
√

2δ‖σ̂‖0)
2 + (

√
2δ‖∇û‖0)

2

≤




2
(
2C3λM + C4λ̃M

)2

(1 − 4λ̃C∗M)
+

h (C2 + C7)
2

2α(1 − α)
+ λ

(
C3C

1/2
u M1/2

)2




C
2

4
h3 ,
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i.e.,

δ‖σ̂‖0 + δ‖∇û‖0 ≤




2
(
2C3λM + C4λ̃M

)2

(1 − 4λ̃C∗M)
+

h (C2 + C7)
2

2α(1 − α)
+ λ

(
C3C

1/2
u M1/2

)2




1/2

C

2
h3/2.

Hence, for M and h sufficiently small such that

C

δ




2
(
2λM + λ̃M

)2

(1 − 4λ̃C∗M)
+

h

2α(1 − α)
+ λM




1/2

≤ 1 ,

we have

‖σ̂‖0 + ‖∇û‖0 ≤ C

2
h3/2 .

Thus (4.25) implies

‖σ−σh
1‖0 +‖∇(u−uh

1)‖0 ≤ ‖σ̂‖0 +‖∇û‖0 +‖σ− σ̃h‖0 +‖∇(u− ũh)‖0 ≤ C

2
h3/2 +

C

2
h3/2 = Ch3/2 .

Hence Φ(Bh) ⊂ Bh. �

Thus we have the following result.

Theorem 4.1 Assume that (σh
0 ,uh

0) is the solution obtained after Step 1 of Algorithm 4.1. Then
for M and h sufficiently small, there exists a fixed point (σh,uh) of Step 2 of Algorithm 4.1 that
satisfies (3.11)-(3.12) and each of the iterates (σh

i ,uh
i ), i = 1, 2, . . ., satisfy

‖σ − σh
i ‖0 + ‖∇(u − uh

i )‖0 ≤ Ch3/2

for constant C > 0.

Proof: If M satisfies the small data condition of Lemma 4.1, the solution (σh
0 ,uh

0) of the defect
step satisfies

‖σ − σh
0‖0 + ‖∇(u − uh

0)‖0 ≤ C0h
3/2.

Then (σh
0 ,uh

0) ∈ Bh where

Bh =
{

(τ h,vh) ∈ Σh × Vh : ‖σ − τ h‖0, ‖∇(u − vh)‖0 ≤ C0h
3/2

}
.

Then by Lemmas 4.3-4.5, the mapping Φ defined by (4.12)-(4.13) satisfies Φ(Bh) ⊂ Bh, and
Brouwer’s Fixed-Point Theorem guarantees the existence of a fixed point (σh,uh) ∈ Bh of Φ solving
(3.11)-(3.12). �
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4.4 Newton Corrector Iteration

The correction step (Step 2) in Algorithm 4.1 uses a linearized iteration in order to solve the original
nonlinear problem. This linearization will be referred to as the Picard corrector, as some terms that
are present in the “full” linearization are not present (precisely those which contain updated velocity
and lagged stress). This full linearization is obtained from computing the Fréchet derivative of the
original problem at a known value (σh

i ,uh
i , ph

i ), which we called the Newton linearization. Within
the context of the defect correction method, the Newton corrector iteration has of the form:

A((σh
i+1,u

h
i+1), (τ

h,vh)) + λBh(uh
i , σh

i+1, τ
h) + λBh(uh

i+1, σ
h
i , τ h)

+ λ̃(ga(σ
h
i+1,∇uh

i ), τ h) + λ̃(ga(σ
h
i ,∇uh

i+1), τ
h)

= 2α(f ,vh) − (λ − 2λ)Bh(uh
i , σh

i , τh)

− (λ − 2λ̃)(ga(σ
h
i ,∇uh

i ), τ h) ∀(τ h,vh) ∈ Σh × Vh . (4.32)

The Newton corrector is expected to converge faster than the Picard corrector. However, conver-
gence of the Newton corrector has not been proven. In addition, the computational implementation
of (4.32) is nontrivial; the term Bh(uh

i+1, σ
h
i , τh) requires the calculation of the jump of the lagged

stress (σh
i ) in the direction of an unknown velocity (uh

i+1). This difficulty is avoided by modifying
(4.32) to use uh

i for the jump term in all occurrences of Bh.

5 Numerical experiments

To investigate the accuracy and effectiveness of the defect-correction method, computational ex-
periments are designed to gauge these attributes. The method has been implemented using the
finite element software package FreeFem++ [29] in 2-d. Linear systems are solved using the UMFPACK

solver. As described in the theoretical analysis, continuous piecewise quadratic elements are used
for velocity, continuous piecewise linears are used for pressure, and discontinuous piecewise linears
are used for stress. The solution approach used for undefected nonlinear problems, as well as the
nonlinear defect step of the defect-correction algorithm, is a standard Newton iteration scheme.
Results obtained on two different problems are presented:

1. A nonphysical problem on a square domain that has a known analytic solution. Computations
show that the method satisfies the theoretical spatial convergence rate and converges to the
same solution as the standard undefected solution approach.

2. A commonly cited benchmark physical problem of a four-to-one planar contraction flow. Com-
putations show that solutions computed under mesh refinement converge to a solution com-
puted using the standard undefected solution approach on a very fine spatial mesh. Com-
putations also show that the method is successful in computing solutions beyond the critical
Weissenberg value.

The three different methods for computing solutions are labeled as:

• STD: A standard Newton nonlinear iteration for the undefected problem.
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• DCN: A defect-correction method with a standard Newton nonlinear iteration in the defect
step and a standard Newton-like linearization in the correction step.

• DCP: A defect-correction method with a standard Newton nonlinear iteration in the defect
step and a Picard-like linearization in the correction step.

5.1 Example 1

As in [8] and [30], Ω = [0, 1]× [0, 1] ⊂ R
2, and chosen functions are added to the right-hand sides of

(2.1)-(2.3) so that the true solution to the problem is given by

u =

(
sin(πx)y(y − 1)

sin(x) (x − 1)y cos(πy/2))

)
, p = cos(2πx) y(y − 1), σ = 2αD(u) .

The parameters α, a in the equations are chosen as 0.5 and 0, respectively. A stopping criterion of

‖uh
i − uh

i−1‖∞, ‖σh
i − σh

i−1‖∞ ≤ 10−8

is used for the iterative nonlinear solver in both the undefected nonlinear solution approach and the
defect step of the defect-correction algorithm. The linear correction step in the defect-correction
algorithm is iterated to the same tolerance. The solution computed for λ = 4.0 was used as the
initial iterate in all cases.

Table 5.1 presents results for λ = 5.0. Specifically, the errors results and mesh convergence rates
obtained by the STD method and the DCP method for several values of λ and λ̃ are given. The
resulting errors for both methods are seen to be the same. It should be noted that the convergence
rates obtained for the cases below are greater than the theoretical spatial convergence rate of 3/2.
As is expected, for larger defects λ−λ and λ− λ̃, the nonlinear and linear corrector iteration counts
increase.

Also of interest is how DCP performs in comparison to DCN. In all experiments where both cor-
rection steps converged, each method obtained the same error result. Very few cases were observed
in which one corrector method converged while the other did not. When the methods did not con-
verge, the Newton corrector was more likely to diverge while the Picard corrector would stagnate.
In most cases, the Picard iteration required more correction steps for convergence than the Newton
iteration, as anticipated. Table 5.2 presents iteration counts obtained by both methods on the mesh
h = 1/8 for several combinations of λ and λ̃. In this table, NNI represents the number of nonlinear
iterations required in the defect step, NCS represents the number of linear correction steps, and an
asterisk denotes that the particular method did not converge for the given parameters.

5.2 Example 2

Numerical simulations of viscoelastic flow through a planar or axisymmetric contraction have been
widely studied (see [31] or Chapter 8 of [32]). Here the case of planar flow through a contraction
geometry with a ratio of 4:1 with respect to upstream and downstream channel widths is considered.
The contraction angle is a fixed 3π/2 and the channel lengths are sufficiently long to impose a fully
developed Poiseuille flow in the inflow and outflow channels. The geometry of the computational
domain is illustrated in Figure 5.1. The lower left corner of the domain corresponds to x = y = 0.
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DCP DCP DCP

STD λ = 4.9 λ = 4.5 λ = 4.0 Rate of

h method eλ = 4.9 eλ = 4.5 eλ = 4.0 convergence
1

4
4.5902E-02 4.5902E-02 4.5902E-02 4.5902E-02

H1 error 1

8
1.1289E-02 1.1289E-02 1.1289E-02 1.1289E-02 2.02

of u
1

16
2.8788E-03 2.8788E-03 2.8788E-03 2.8788E-03 1.97

1

32
7.1002E-04 7.1003E-04 7.1003E-04 7.1003E-04 2.02

1

4
5.5428E-02 5.5429E-02 5.5429E-02 5.5429E-02

L2 error 1

8
1.4605E-02 1.4605E-02 1.4605E-02 1.4605E-02 1.92

of σ
1

16
3.3900E-03 3.3903E-03 3.3903E-03 3.3903E-03 2.11

1

32
7.6339E-04 7.6371E-04 7.6371E-04 7.6371E-04 2.15

Number of 1

4
8 8 7 7

nonlinear 1

8
7 7 7 8

iterations 1

16
6 6 7 8

(NNI) 1

32
6 6 7 9

Number of 1

4
21 22 25

correction 1

8
25 26 25

steps 1

16
38 39 40

(NCS) 1

32
50 54 56

Table 5.1: Errors and convergence rates for λ = 5.0 and selected values of λ, λ̃, defect correction
method (Picard corrector).

λ = 5.0 NCS NCS

λ eλ NNI (Picard) (Newton)

4.9 4.9 7 25 5

4.5 4.5 7 26 9

4 4 8 25 14

3 3 8 129 44

5 4.5 8 29 11

4.5 5 8 27 12

5 4 10 46 19

4 5 9 28 29

5 3 11 612 107

3 5 12 81 *

4.5 4 8 35 16

4 4.5 8 26 17

Table 5.2: Iteration counts for Picard and Newton correctors, h = 1/8, λ = 5.0, selected values of
λ and λ̃

The factor L is set to 1/4 for these computations. On this domain the velocity boundary conditions
are

u =

[
1
32(1 − y2)

0

]
on Γin , u =

[
2

(
1
16 − y2

)

0

]
on Γout. (5.1)

Boundary conditions for σ must be specified on the inflow boundary. From the constitutive equation
(2.1) and the velocity conditions (5.1), for u1,y = ∂u1/∂y, we have

σxx =
−αλ(a + 1)u2

1,y

(a2 − 1)λ2u2
1,y − 1

, σxy =
−αu1,y

(a2 − 1)λ2u2
1,y − 1

, σyy =
−αλ(a − 1)u2

1,y

(a2 − 1)λ2u2
1,y − 1

, on Γin .

Symmetry conditions are imposed on the bottom of the computational domain. The parameter α
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L

16L

16L

Figure 5.1: Geometry of 4:1 contraction domain

is set to 8/9 and the initial iterate was given by (σ,u, p) = (0,0, 0). Computations were performed
on three different meshes, M1, M2, and M3. Table 5.3 lists the characteristics of the meshes.

Mesh ∆xmin ∆ymin No. of degrees of freedom

M1 0.25 0.0625 1880
M2 0.125 0.03125 7321
M3 0.0625 0.015625 28895

Table 5.3: Mesh characteristics

To determine the accuracy of the defect-correction method, solutions computed on successive meshes
were compared to a solution computed by the STD method on a very fine spatial mesh (114811
degrees of freedom). For the results shown here, a = 1 (Oldroyd-B model) and λ = 0.7. Table 5.4
gives values of solutions norms computed by the STD and DCP methods. As the mesh is refined,
the norms of the computed approximations approach the values computed on the very fine mesh.

Method Mesh ‖uh‖0 ‖uh‖1 ‖σh‖0

STD Fine 0.104166 0.595209 0.932091

DCP M1 0.104243 0.595417 0.935189

λ = 0.5 M2 0.104207 0.595287 0.933602

λ̃ = 0.5 M3 0.104183 0.595243 0.932683

DCP M1 0.104243 0.595417 0.935193

λ = 0.35 M2 0.104206 0.595287 0.933606

λ̃ = 0.35 M3 0.104183 0.595243 0.932687

DCP M1 0.104243 0.595417 0.935192

λ = 0.4 M2 0.104206 0.595287 0.933604

λ̃ = 0.6 M3 0.104183 0.595243 0.932686

DCP M1 0.104243 0.595417 0.935187

λ = 0.6 M2 0.104207 0.595287 0.933599

λ̃ = 0.4 M3 0.104184 0.595243 0.932681

Table 5.4: Solution norms, successive meshes, λ = 0.7, a = 1.
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For each method, λ∗ was the “maximum” value for which the method converged. The values of λ∗

obtained by STD, DCN, and DCP on both meshes for different values of a are presented in Table
5.5. For the values of a considered here, the λ∗-DCP values were the same as the λ∗-STD values for
the case a 6= 0. However, DCN significantly improves the λ∗ values obtained by STD.

Mesh a λ∗-STD λ∗-DCP λ∗-DCN

1.0 2.430 2.430 4.993
M1 0.0 1.286 2.722 2.719

-1.0 1.465 1.465 3.121

1.0 1.821 1.821 3.682
M2 0.0 0.934 1.990 1.993

-1.0 1.321 1.321 2.738

1.0 1.412 1.412 2.810
M3 0.0 0.823 1.666 1.663

-1.0 1.170 1.170 2.185

Table 5.5: Critical λ values for (σ,u, p) = (0,0, 0).

The two examples illustrate that the defect-correction approach can be effective in extending the
range of Weissenberg numbers for which a numerical approximation to the viscoelastic fluid flow
equations can be obtained. The optimal choices of the defect parameters is still an open question
and is being investigated.
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