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Abstract

In this article, we analyze the flow of a fluid through a coupled Stokes-Darcy domain. The
fluid in each domain is non-Newtonian, modeled by the generalized nonlinear Stokes equation
in the free flow region and the generalized nonlinear Darcy equation in the porous medium. A
flow rate is specified along the inflow portion of the free flow boundary. We show existence and
uniqueness of a variational solution to the problem. We propose and analyze an approximation
algorithm and establish a-priori error estimates for the approximation.
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1 Introduction

The coupling of Stokes and Darcy flow problems has received significant attention over the past
several years due to its importance in modeling problems such as surface fluid flow coupled with
flow in a porous media (see, for instance, [4, 9, 12, 14, 16, 20, 21]). As in [12], the investigation in this
paper is motivated by industrial filtering applications where a non-Newtonian fluid passes through
a filter to remove unwanted particulates. The lifetime of the filter is dictated by the increase in
pressure drop across the porous medium. This pressure drop increase occurs as debris, transported
into the filter by the free flowing fluid, deposits into the filter. Models of the coupled system are
necessary to develop simulators that can aid in the design of filters with extended lifetimes and
minimize release of debris into the downstream flow.

In these applications, flow rates are typically specified at the inflow of the filtering apparatus. Our
first step in modeling the filtration problem is to consider the case of coupled nonlinear Stokes-
Darcy flow problem with defective boundary conditions. Namely, we assume that only flow rates
are specified along the inflow boundary. In [12], the authors use the Darcy equation as a boundary
condition for the Stokes problem in the free-flow region. We couple the flows across the internal
boundary by using conservation of mass and balance of forces across the interface, as in [9, 14, 20, 21].
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For Newtonian fluids the extra stress tensor, 7, is proportional to the deformation tensor, d(u), with
the constant of proportionality being the value of the kinematic viscosity, v. Our model problem
uses generalized power law fluids, which are an extension of Newtonian fluids. Generalized power
law fluids have a non-constant viscosity that is a function of the magnitude of the deformation
tensor. Models for such viscosity functions include the following [3, 17]:

Carreau model:

v(d(u)) = veo + (10— Voo) /(1 + K|d(u)]?)?77)/2 | where r > 1, 15, Voo, K > 0 are constants,

(1.1)

Cross model:
v(d(u)) = veo + (10— so)/(1 4+ K|d(u)|?™")), where r > 1, 1y, Voo, K > 0 are constants, (1.2)
Power law model:

v(d(u)) = K|d(u)|""?, where r > 1, K > 0 are constants. (1.3)

Many generalized Newtonian fluids exhibit a sheer thinning property; that is, as the magnitude
of d(u) increases the viscosity decreases. For the above models this corresponds to a value for r
between 1 and 2. Generalized power law viscosity models have been used in modeling the viscosity
of biological fluids, lubricants, paints, and polymeric fluids. In the analysis below we assume a
general function for v(d(u)) that satisfies particular continuity and monotonicity properties. (See
(2.16),(2.17).)

For non-Newtonian fluid flow in a porous medium, various models for the effective viscosity v,y s
have been proposed in the literature. (See for example, [15, 18] and the references cited therein.)
Based upon dimensional analysis most models assume that v s is a function of |u,|/(y/k m.), where
k denotes the permability of the porous medium, u, the Darcy velocity, and m, is a constant related
to the internal structure of the porous media. Models for v,s include [15, 18]:

Cross model:

Verf(Wp) = Voo + (V0 — Vo) /(1 + K |up/*™"), where 7 > 1, v, vso, K > 0 are constants, (1.4)
Power law model:

vesr(up) = K (]up\/(\/gmc))r*2 , where r > 1, K > 0 are constants. (1.5)

Again, in the analysis below we assume a general function for vesr(u,) that satisfies particular
continuity and monotonicity properties. (See (2.16),(2.17).)

Remark: In this work we ignore the influence of pressure on viscosity.

The variational formulation presented below for the coupled nonlinear flow problem (ignoring the
defective boundary conditions) is analogous to that for the linear coupled problem studied in [9, 14,
20, 21]. However as the function setting for the linear problem is in Hilbert spaces (H1(92), L*(Q))
compared to Banach spaces (W ,(Q), L (Q)) for the nonlinear problem, the analysis used herein
is considerably different than that in [9, 14, 20, 21].



2 Modeling equations

Let Q@ € R", n = 2 or 3, denote the flow domain of interest. Additionally, let 2y and €2, denote
bounded Lipschitz domains for the nonlinear generalized Stokes flow and nonlinear generalized Darcy
flow, respectively. The interface boundary between the domains we denote by I' := 02y N 9€2,. Note
that € := Q;UQ,UTI. The outward pointing unit normal vectors to {2y and (2, are denoted ny and
n,, respectively. The tangent vectors on I' are denoted by t; (for n = 2), or t;,l = 1,2, (for n = 3).

We assume that there is an inflow boundary I';;,, a subset of 9Q¢\I', which is separated from I', and
an outflow boundary Iy, a subset of 9Q,\I', which is also separated from I'. See Figure 2.1 for an
illustration of the domain of the problem.

Porous Media
Qp

Figure 2.1: Illustration of flow domain.

Define I'y := 0Q¢\(I' UTy), and T'p := 0, \(T' U T o).

Velocities are denoted by u; : ; — IR", j = f,p, and pressures are denoted by p; : Q; — IR, j =
fip

In Qf, we assume that the flow is governed by the nonlinear generalized Stokes flow, subject to a
specified flow rate, — fr, across I';;, and no-slip condition on I'y:

—V (o —piI) = £y inQy,
V-us = 0 inQy,

o = gr(d(ug))d(us) inQy,
usr = 0 only,

/ uy-ngds = —fr,
Lin

where o denotes the fluid’s extra stress tensor and d(v) := (Vv + V7v) is the deformation
tensor. The particular form for the nonlinear viscosity function gy(-) is discussed in Section 2.2.
For simplicity we consider here the case of a single inflow boundary I';,. Multiple inflow boundary
segments with separately specified flow rates can also be modeled [6, 7, 11].
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We assume that the flow in the porous domain €2, is governed by a generalized Darcy’s equation
subject to a specified flow rate, fr, across I',,; and a non-penetration condition on I'j:

K

u, = - Vp, in§,, (2.6)
Veff

Veu, = 0 inQ,, (2.7)

u, n, = 0 only, (2.8)

(2.9)

/ u, -nyds = fr,
1—‘out

In general x denotes a symmetric, positive definite tensor. For simplicity, we will assume & is a
positive (scalar) constant.

2.1 Interface conditions

The flows in €1y and €2, are coupled across the interface I'. Conditions describing the coupling of
the flows are discussed below.

Conservation of mass across I': The conservation of mass across I' imposes the constraint
uy-ny +u,-n, =0 onl, (2.10)

Balance of the normal forces across I': The balance of the normal forces across I' imposes the
constraint

pf — (ong)-ny = p, onl, (2.11)

Balance of the forces on I': For the tangential forces on I' we use the Beavers—Joseph—Saffman
condition [1, 13, 22]

ur-t; = —csry(omng)-t; onl, [=1,....n—1, (2.12)

where csr;, [=1,...,n— 1, denote frictional constants that can be determined experimentally.

2.2 Variational Formulations

Given r € IR, r > 1, we denote its unitary conjugate by 7/, satisfying r—! + (#/)~! = 1.

For €y, define

Xp={v:ve (Whr(Q))™ | vlr, = 0}, and Mj:= L’"/(Qf).

For v € Xy, g € My we define |[v|[x, = [[v[[wrr@,)n, and [[q]|ln, = Hq||LT/(Qf).

For ), define
L (div,Q,) :={v:ve (L'(Q)" and V-v e L'(Q,)},

X, ={v:velL(div,Q)|v-n|p, =0}, and M,:= L ().
Similarly, for v € X, ¢ € M), we define ||v|x, = [[Vl](zr@,)» + IV - Vlirq,), and [lqlla, =
”qHLT'(Qp)'



We also use the spaces X, and M defined on 2 by
X=Xy x Xy, and M:= {qEfoMp]/qu:0},
Q

and denote the dual space of X by X*.

Forv = (vy,vp) € Xandq = (qr,q) € M,
’ / / '
IVlix = Ivsllx, + Ivpllx, and  llallar = (gl g,y + laplmg,) -

Also, for f, k : Q — R™, (f,k) = [, f-kdA.

Let g(x) : RY — Rt U {O} and G(x) : RY — RY be given by G(x) := g(x)x. Further for
x,h € RY, let G(-) satisfy, (for constants C;, Ca, C3 > 0, and ¢ > 0)

Al: |G(x+h)-Gx)||h] < Ci(G(x+h)—-G(x))-h, (2.13)
|h|”

A2:
¢+ [x[>7" + [x +h>

IN

Cy(G(x+h)-Gx))-h, , (2.14)
||
C :
S+ X+ [x+h]2r
with the convention that G(x) =0 if x =0, and |h|/(c+ |x|+ |h]) =0ifc=0and x=h = 0.

A3: |G(x+h)-G(x)|

IN

(2.15)

From A1, A2 and A3 it follows (see [23]) that there exists constants C4,C5 > 0 such that for
s, t,w € (L"(Q)N

Is ftH%r

/Q(G(s)—G(t))-(s—t)dA > Cy (/ﬂ]G(s)—G(t)Hs—ﬂdA t s s +||t|| > , (2.16)
st L

/Q(G(s)—G(t))-wdA < Cs el (/ IG(s) |s—t|dA> W[y - (2.17)

In Q,, with x,h in (2.13)-(2.15) denoting vectors in IR™ and - the usual vector dot product, we
assume that g,(u,) := vesr/k, and let G,(v) = gp(v)v.

In Qf we assume that o = gr(d(uy))d(uy), and let G¢(7) := g¢(7)T, where we interpret x, h in
(2.13)—(2.15) as tensors in IR™*™ and - as the usual tensor scalar product :.

Remark: For v = 0, conditions (2.13)-(2.15) are satisfied for G¢(7) and Gp(v) with g¢(d(u)) =
v(d(u)) described in (1.1),(1.2),(1.3), and gp(up) = vefr(u,) described in (1.4),(1.5) (see [23]).
Different functions spaces are required, that the setting studied herein, for v, > 0

Multiplying (2.1) through by vi € X, integrating over Q, using (2.3) and the fact that {ng,t;,1 =
1,...,n — 1} form an orthonormal basis along I', we have

/ fr-vidA = / o:d(vy)dA — / prV-vidA — / ((=pfI + o)ny) - vids
Qf Qf Qf Tul';,
n—1
= / gr(d(uy))d(uy) : d(vi) dA — / prV-vidA + Z/ —n?atl vy -ty ds
Q Qf =171
+ /(pf - n?anf) vi-nyds — / ((=pfI + o)ny) - vids. (2.18)
T n
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Also, multiplying (2.6) through by vy € X, and integrating over €, we obtain

0 = /gp(up)up'v2dA—/ ppV-Vsz—i—/ Pp Vo - Ny, ds
Q Q T

P P out

+ /pp Vo -ny,ds. (2.19)
r

The coupling of the Stokes and Darcy flows occur through the interface conditions (2.10) and (2.11).
Following [14], we introduce a new variable A representing

Ai=py — (ong)-ny = pp, (2.20)

and incorporate (2.11) into (2.18) and (2.19). Equation (2.10) is imposed weakly in a separate
equation. (See (2.32) below.)

Note that using the Beavers—Joseph-Saffman condition (2.12)
n—1 n—1
Z/ —n?atl vy -tpds = Z/csrl_l (up-t;) (vi-t)ds.
=171 =170

To incorporate the specified flow rate conditions into the mathematical formulation we use a La-
grange multiplier approach. In (2.18) and (2.19)

/ ((=pfI + o)ny) -vids is replaced by ﬂm/ vi-ngds, (2.21)
F'Ln Fin
/ pp Ve -npds s replaced by Bout/ vy -n,ds, (2.22)
Fout Fout

where Bin, Bout € IR are undetermined constants. Below we comment on the implicit assumptions
induced by using the Lagrange multiplier approach.

For v € WO (div,§,), we have that v - n, € W=/ (99Q,), [8] pg. 47.
For v € X, and A € W'/ (T") we define the operator v - n, € W=1/""(T) as

(v ny, Nr = (v-n,, EF Mg, , (2.23)

with Ef/)\ defined as in Lemma 9 in the Appendix (with the association p =/, Q@ = Q,, T' =
F, Fb - Fpa Pd = Fout)-

Note that for v € X, sufficiently smooth,

(v-n,, Nr = (v-np,, Bl Naq, = /v-np)\ds.
T

For v € (W' (Q;))" we have that v -n; € W™ (9Q;), hence Jrv-ngAds is well defined.



In order to compactly write the mathematical formulation we introduce the following bilinear forms:

n—1
ar(u,v) := /Qf gs(d(u))d(u) : d(v) dA + ZZ;/chrl_l (u-t;) (v-t;)ds, (2.24)

ap(u,v) = / gp(u)u-vdA, (2.25)
P
be(v,q,8) = /Q qV-vdA—i—B/F v-ngds, (2.26)
f in
bp(v,q,8) = /QqV-VdA—i-ﬂ g v-nyds. (2.27)
P out

With the above notation, the modeling equations in €2y may be written as:

af(up,vi) — br(vi,pf, Bin) + /Fvl-nf)\ds = (fr,vi)e, Vvi1e€ Xy, (2.28)
be(ur,qi,61) = —Fifr V(g xp1) e My xR, (2.29)

and in €,
ap(up,ve) — by(va,pp, Bout) + (M va-mp)r = 0 Vv € X, (2.30)

bp(p, g2, B2) = Pafr V(g2 xf2) € My xR. (2.31)

Together with (2.28)—(2.31) we have the interface condition (2.10). We impose this constraint weakly
using

/Fuf-nfgds + (u,-n,,Or = 0, VCeWw/ (). (2.32)
Introduce f := (f;, 0), br(,-) : X x W'/ (T') — R as
b(.0) = [ vy omCds + (vyemOr. (2.33)
and a(-,): X x X =R, b(-,-,-): X x M x R? - IR as
a(u,v) = ag(uy,vy) + ap(up, vp) and b(v,q,7) = bp(vy,ar,m) + bp(vp,ap,72) . (2.34)

We then state the coupled fluid flow problem as: Given f € X*, fr € R, determine (u,p,\,3) €
X x M x WYn(T) x IR? such that

awv) — bv.p.B) + bi(v.N) = (Ev) WeEX, (2.35)
boagoy) = biad) = | Ty S Ve € M) xR (2.36)

The unique solvability of (2.35)-(2.36) hinges on showing two inf-sup conditions: one for b(-,-,-),
and the other for b(-,-).



Equivalence of the Differential Equations and Variational Formulations

As demonstrated above, the variational formulation (2.35)-(2.36) is obtained by multiplying the
differential equations by sufficiently smooth functions, integrating over the domain and, where ap-
propriate, applying Green’s theorem. In addition we used (2.21)-(2.22) to impose the specified flow
rate boundary conditions. For a smooth solution the steps used in deriving the variational equations
can be reversed to show that equations (2.1)-(2.5), (2.6)-(2.9) are satisfied. In addition we have that
a smooth solution of (2.35)-(2.36) satisfies the following additional boundary conditions (see [7]).

For ny the outward normal on I';,, express the extra stress vector on I';,, ony, as
ony = spny + sr,

where s, = (ony)-ny and sy = ony — s,ny. The scalar s, represents the magnitude of the
extra stress in the outward normal direction to I';,,, and sp the component of the extra stress vector
which lies in the plane of I';,.

Lemma 1 Any smooth solution of (2.35),(2.36) satisfies the following boundary conditions.

on 'y, : —pf + Sn = —Bin and st = 0. (2.37)
on Tout Pp = —Bout - (2.38)

Proof: The proof follows as in [7].

Remark: The equations (2.1)-(2.5), (2.6)-(2.9), (2.10)-(2.12), do not uniquely define a solution,
but rather a set of solutions. The variational formulation (2.35)-(2.36) chooses a solution from the
solution set. Specifically, (2.35)-(2.36) chooses the solution which satisfies (2.37)-(2.38) . A different
variational formulation may result in the selection of a different solution from the solution set. (See,
for example, [7].)

3 Existence and Uniqueness of the Variational Formulation

In order to show the existence and uniqueness of the variational formulation we introduce the
following subspaces of X:

Vi={veX|b(v,()=0, forall (e WY""(I)}, (3.1)
Z:={veV|bv,q~v) =0, forall (¢~) €M xR?*}.

Consider b(-,-,-) : X x M x IR? — IR defined in (2.34). Using Holders inequality together with

the definition (2.23), we have that b(-,-,-) is continuous. In addition, b(-,-,-) satisfies the following

inf-sup condition.

Lemma 2 There exists Cyrry > 0 such that

lnf su b(u7 Q7’Y)

, Sup > CyMRy (3.3)
0,004 emxR> uev [ullx (@, V), Rr2

where ||(g, )], w2 = lallar + IV IRe-



Proof:
Fix (¢,v) € M x IR? and let

r'/r—1
= 7’q| 'r’—lq , = l |’|Y . (3.4)
llall3s VIR?

Note that [oqGdQ = llgllar, [dllzr@) = 1, and v 4 = [[7llRe, ¥Rz = L.
Let I'* C I'; such that meas(I']*) > 0, and dist(I']", 0Q\I';) > 0, for i = in, out.
Let h € C(9Q) ¢ WY (9Q) be given by

hlpm = 4i/meas(I}"),i = in, out ,
0

Rl H0\ (T3 UT o)

and on I';\I'/" h is either a strictly increasing or strictly decreasing function.

5= </8th3 - /QqczA> Jmeas(Q) .

From [8] pg. 127, given f € L(Q), a € W'~/ (99Q), 1 < r < oo, satisfying

Also, let § € IR be given by

/fdA :/ a-nds, (3.5)
Q 09
there exists v € W1 (Q) such that
Vv = f imQ, (3.6)
v = a on0f,
with [Vwigy < C (Iflzr@ + Nl en ) - (3.8)

Let f = ¢ + ¢, and for {n,t;,s = 1,...n — 1} denoting an orthonormal system on J{2, let a be

defined by
a-n = h
{a'ti = O,i:1,...n—1.

Remark: The choice of the constant § guarantees that the compatibility condition [, fdQ =
Jaq @~ nds is satisfied.

Note that HaHWl/T’W(aQ) < ||@HIRm = (.

Also,
/ jdA
Q

/ hds
o0

IN

ldllr ) ) = C2 s (3.9)

IN

g2 Rz = Cs (3.10)



and thus [|8]|zr) < Ci.

Let vy = V|@, vy = V|@, where v denotes the solution of (3.6)(3.7). From (3.8) we have

[vlx < CAQ+Cy+Cr) < Cs. (3.11)
Also, note that v € Wl/T/”((?Qf), v € Wl/r,”’(ﬁflp), and vy = v, onI'. Thus, for A € W/ (),

/Vf~nf/\ds + (vp-n,, Nr :/Vf-nf)\ds + /Vp~np/\ds =0,
r r r

ie, veV.

Now,

v-nyds +’yg/ v-n,ds

Fout

> /q((j+5)dA + vy
0

lallar + [17lR2
= ||(qa'7)HM><]R2>

as [oq0dA =0 for g € M. Thus,

b(u, (q,7)) N b(v,(q,7)) oL
> &

sup =
uev (@, B) Ly rmllallx = (g, B)llemm IVIx

from which (3.3) directly follows.

The required inf-sup condition for b;(-,-) may be stated as follows.

Lemma 3 The bilinear form by(-,-) : X x W™ (I') — IR is continuous. Moreover, there exists
Cxr > 0 such that

inf sup br(u, \)

> Cxr. (3.12)
0AAEW /T (D) ue X HuHX HAHWUT,T’(F)

Proof:
The continuity of b;(-, ) follows from the continuity of the trace operator and definition (2.23).

The proof of this inf-sup condition requires a suitable extension of a functional from W~/ mT(T)
to W~1/77(99,) be defined. Some of the notation used in this proof is defined in the Appendix
where suitable extension operators from I' to 012, are discussed.

To show (3.12), let A € Wl/’"”"/(F). Then, from the definition of the norm, there exists fr €
WL (D), || frllyg—1/rr ) = 1, such that

1
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Given fr € WY/™(T) we can extend it to a functional in W~/ (9),), f, by
(f ©on, = (fr,&r)r, for &€ W (00). (3.14)
Note that for n € WOIO/T’TI(QQP\F)

(f+ By oo rmon, = (frs By oo onlr)r = (fr, O = 0.

Thus, from Definition 1 (see Appendix), f|so\r = 0.

Also,
(f, &on (fr, &o)r
I llw—1/mr00,) = sup o = sup oo
cewr/n (09,) llwimr oo,y cewrimr oa,) €l 0g,)
Lfellr=17mr oy €0 g
< sup L= WD < I frllw-1/mr @y = 1. (3.15)
fewl/r’ﬂ(aﬂp) ||£||W1/T’TI(BQP)

Let ¢ € WLT/(QP) be given by the weak solution of

V- V"2V + 4] 29 = 0 inQ,, (3.16)
Vo] ?V¢-n, = f ondQ,, (3.17)
i.e. ¢ satisfies
(T(6),w) = / (V6" 2Vo- Vo + (o 2ow) dA = [ fwds. vwew ().
Qp oy

Existence and uniqueness of ¢ follow from the strong monotonicity of T : W' (€,)) — (Wlﬂ"/ (Qp)) .

Note that

A

(T6),8) = 16, < IFlwrmeoonlSlwimon,y < Cilflwmroo) @l a,

= |l Cllfly-1/mron,) < Cs (as fllw-1/rraa,) < 1)- (3.18)

IN

,r/
Wi’ (©2p)

Now, let v := |V¢|" ~2V¢. Note that from (3.16) that V- v = |¢|"'~2¢, and
”VH;VOW(div,Qp) = H(bH?{/Il/l,r’(Qp) < (. (319)

ie., ve WO (div,Q,), and v -n, € W=1"(90,).
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Finally, let w = (0,v) € X. Then, in view of (2.23)

br(u, \) S br(w,\) 0+ (v-n,, A)r

wex lullx 7 wlx [vllwor(div.,)
(v-n,, E’I’i,)\>agp
clr

1 .
= WOC, Er Noq,

v

1
= it Nras flag,e =0, (see (A7)

1
WH)\le/r,W(F) from (3.13).

Y

We are now in a position to prove the existence and uniqueness of the solution.

Theorem 1 There exists a unique solution (u,p, X, 8) € X x M x W/ () x R? satisfying (2.35)-
(2.536). In addition, there exists a constant C > 0 such that

lulx < ¢ (gl + 1571) - (3.20)

Proof: For v = (vi,v2) € Z, note that V-v; =0 a.e. in Qf and V- vo = 0 a.e. in ,. Hence, for
v € Z, |valx, = Ivallzr(a,), and [[vlx = [[villx, + [[vallzr(,)-

From the continuity and inf-sup condition for b(-,-,-) ([10], Remark 4.2, pg. 61) there exists ug € V’
such that

-1
b(uo,q,y) = ’Y'[ 1}fT,V(q,~/)€M><]R2,

with HU.QHX < C]fr| (3.21)

Together with the continuity and inf-sup condition of bs(-,-), the existence and uniqueness of the
solution to (2.35)-(2.36) can be equivalently stated as: Given f € X*, determinet € Z, u = u+uy,
such that

a(i+ug,v) = (f,v), VvweZ. (3.22)
The existence and uniqueness of the solution to (3.22) follows from the continuity and strict mono-
tonicity of a(-,-) on Z x Z; which follows from assumptions (2.16)-(2.17), and the restriction that
for Q c IR?, 4/3 <r<2and Q C R3, 3/2 < r < 2. This restriction arises in applying the Sobolev
inbedding theorem to verify the continuity of a(-,-). Specifically,

n—1
Z/chrfl ((up —wy)-t) (vp-ti)ds < Cllug —wyllrz2m) [vellzzr
=1

< Cllug = wellywr-1/mr@a,) 1Vellwi-eroa,)
< COllu—wlx [[v]x-

12



Also, it follows from (2.16),(2.17) and (3.21), that
lalx < CUlElx + 1#7) = C (lErlx; + 1fr]) .

and therefore, the estimate
lulx < ¢ (Iglx; + 1r) -

4 Finite Element Approximation

In this section we discuss the finite element approximation to the coupled generalized nonlinear
Stokes—Darcy system (2.35),(2.36). We focus our attention on conforming approximating spaces
Xpn C Xy, My, C My, X5 C Xp, My, C My, Ly, C Wl/”/(f‘), where Xy, My, denote velocity
and pressure spaces typically used for fluid flow approximations, and X, 1, M,, ;, denote velocity and
pressure spaces typically used for (mixed formulation) Darcy flow approximations.

We begin by describing the finite element approximation framework used in the analysis.

Let Q; C R", (n=2,3)j = f,p, be a polygonal domain and let 7}, be a triangulation of ; made
of triangles (in IR?) or tetrahedrals (in IR?). Thus, the computational domain is defined by

Q= UK; K € ﬂ,hU%,h-
We assume that there exist constants ¢y, ¢y such that
cah < hg < copk

where h is the diameter of triangle (tetrahedral) K, pg is the diameter of the greatest ball (sphere)
included in K, and h = maxge71; 07, , Ni-

For simplicity, we assume that the triangulations on (Tf and ©Q, induce the same partition on T,
which we denote Tt .

Let Py(A) denote the space of polynomials on A of degree no greater than k. Also, for x =
[21,...,7,)7 € R, let RT}(A) := (Pi(A))" + xPy(A) denote the kth order Raviart-Thomas ele-
ments. Then we define the finite element spaces as follows.

X = {veX;nC(Qy)?:v|g € Pu(K), VK € Ty} (4.1)
Mgy, = {qe MynC(Qy):q|lg € Pn1(K), VK € Typ} . (4.2)
Xpn = {veRT(K), VK € T,,} , (4.3)
M,n = {qge€ My:qlx € Py(K), VK € Tz}, (4.4)

Ly = {g e WY (YN CM) : ¢l € PK), VK € Tp,h} . (4.5)

Note that as we are assuming 1 < r < 2, then 1/r > 1/2, which implies that, for Q c IR?
Xewl/ ’”’TI(F) is continuous. For m = 2, Xy j; and My ) denote the Taylor-Hood spaces.

Below we assume that m > 2, k> 1, and [ < k.

13



Let
X]Q,h = {V € Xypp: V|an = O} , and ngh = {v € Xpp vV -Dplog, = 0} )

Lemma 4 There ewists constants Cyp,, Cpp > 0, such that

fo qhn V- Vp dA
inf sup > Cin, (4.6)
0#qn€My, vihEX), th”Mf ||VhHXf

. fQ dhn V- Vp dA
inf sup L

0£aneMpn v, ex0, lanllag, [valx,

Con - (4.7)

Proof For the case of the pressure spaces having mean value equal to zero the inf-sup conditions
(4.6) and (4.7) are well established. As commented in [14], one can extend the inf-sup conditions to
the above pressure spaces via a local projector operator argument. (See [2], Section VI.4.) [

Remark: There are several other suitable choices of approximation spaces. (See discussions in
14, 9].)

Discrete Approximation Problem: Given f € X*, fr € IR, determine (up, pr, An, B1,) € Xp X M, X
L, x R? such that

a(up, va) — b(Vi,pn, Bp) + br(vi, An) = (£,vi) Vv, € Xy, (4.8)

b(up, qn,vp) — br(un,Gn) = Y- [ _1 ] fro Yan, ¥ Cn) € My x IR* x Ly(T). (4.9)

For the analysis a more general inf-sup condition than that given by (4.6),(4.7) is needed. This is
established using the following two lemmas. (See also [24].)

Corresponding to V and Z as defined in (3.1),(3.2), we have the discrete counterparts

Vi = {v e Xy, | br(vin,¢) =0, forall ¢ €Ly}, (4.10)
Zp:={veVy|b(v,q,7) =0, forall (q,7) € M) x R*} . (4.11)

Lemma 5 There exists Crxpn > 0 such that for h sufficiently small

. frm Piwysp-npds + frout B2 Wy, - 1p ds
inf sup

> Crxh - 4.12
04 BEIRE whe Iwallx 1Bl (4.12)

Proof: We use (3.5)-(3.8) to construct a suitable function v. Then using a linear interpolant for v
we obtain the stated result.

Assume B = [31, f2]” € IR? is given.

For i € {in, out}, let s;(x) denote an arclength parameter on I';, and define ¢; : 92 — IR by

[T

|13i|3i(x), xely, 0<s< 5,
6i(x) = { FH(Nl-si(x), xeli, Hl<smx) <y,
0, otherwise.

14



Further, let a € W!=1/""(9Q), and f € L"(Q) be given by
1
a(x) = (B1oin(x) + B2 pou(x)) 1, f(x) = 1/T/ a-nds . (4.13)
QT Jon
Note that Hauwl—l/r,r(ag) < ’ﬁl’”¢innuwl—l/r,r(ag) + ‘52‘ |’¢OuthW1—1/m,r(aQ) < CH,@HIRQ, and

Ifllzr@) < UBil[Tin] + 102] [Tout]) /2 < C[IBllR>-

With a and f given by (4.13), let v be given by (3.6), (3.7), and vy = Ih(V)’@, Vph = Ih(V)‘my
where Ij,(v) denotes a continuous linear interpolant of v with respect to 77 U 7, ,.

Note that vy, = (vin, vpr) € Zp, and

IN

||V - VhHWs,'r(Q) Chl_SHVHWI,T(Q) , 8 = 0, 1,

A

IV =valworea) < OB Ivlwir)-

Then, for h sufficiently small,

s me Biwyp -npds + frout Ba Wy - 1y ds N me Bivip-npds + frout B2 Vpp - npds
whEXn [wallx Ivallx
Jr, Biveongds + [p Bovyempds + o Bi(vVen—vy) ompds + [ B (Vph —Vp) mypds
- Clvllx
CllIBllR2 — Coh” 1BlRe »

from which (4.12) follows.

v

Lemma 6 For h sufficiently small, there exists Cpp, > 0 such that

inf b(vh7 (qhvﬁ))
m su
(0,0)%£(qn,B)eMy xIR? vi€VS, Ivallx H(q”@)HMXE{?

> Cyp, - (4.14)

Proof: Let (py,8) € M}, x IR?. From Lemma 5, there exists @, € X}, such that

fI‘m /81 Vf)h ’ nf dS + frout /62 Vp,h : npd

S
[ x > CrxalBlgz-  (4.15)

lanllx = [IBlgm and

Consider the following two problems.
Problem 1 Discrete power-law problem in Qf: Determine uy,, € X})h, Dfh € My, such that

(Id@@pn)2d(@sn), d(v)) — (B, V-v) = 0, Ve X, (4.16)
- 1—r' e .
(@, V-agn) = (a, llpgnll, P pgal " ppa = V) Vg € Mpy(417)
and

Problem 2 in §2,: Determine u, ) € X}?h, Dp,h € M,y such that

(|ﬁp7h|r_2ﬁp,hv v) — (Bpn,V-v) =0, Ve X]()),h? (4.18)
- 1—r' e .

(0. V- t0) = (a. [ppnllny " 1l pp = V- ipp), Vg€ Myp.  (4.19)

15



1—r'/r

Note that ||pj,h||Mj |pj,h|rl/r_1pj,h - V-u,, € L'(Qy), j=f,p.

Existence and uniqueness of uy; € X%h, Drn € Prp oand u,) € X;?,h? Dp,n € By satisfying
(4.16),(4.17) and (4.18),(4.19), respectively, follow from the inf-sup conditions (4.6),(4.7) and the
strong monotonicity of T: X — X*, (T(¢),v) :== [ |¢]" 24 -y dA.

From (4.16),(4.17) with the choices v =Gy, and ¢ = Dy p,

[aral, = (Id@@pu)|"?d(@sn), d@@sn)) = Bra, V-bgn)
= (Brn; ||pf,h|!11\2fr//r pral” " ppn — V)
< |psnllar, (||pf,hHJl\Zfrl/r lprnl™ /" ppallr + \IV'ﬁf,hllm>
< Mpgallagy (Ipgnllag, + Cllagslx,)
< Cllbsaluy (Ipsallvg + 18Ig2) - (4.20)

Also, from the inf-sup condition for spaces X]Q p, and My, we have

~ ﬁ oy Vv
clpgnllay, < sup (Br4, V)
vext,  IVIx,
_ (Id (i) 2d(ig), d(v))
= sup
VGX%h HVHXf
o U@L A0
vex?, Ivilx,
= [dGag)l " 2dGgn)|
= lagal; - (4.21)
Combining (4.20) and (4.21) we have the estimate
lagallx, < € (Ipsalla, + 18lige) - (4.22)

Proceeding in a similar fashion for u,j satisfying Problem 2 leads to the estimate

lapllx, < C (Ippallas, + 181R2) - (4.23)

Let uj, = uj, + 4,5, j = f,p. Note that, asuy, =0on I and u,; -n, =0on I, u, € V.
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Then, using (4.17),(4.19) and (4.12)

/pﬁhv'uf’hdA-i-/
Q; Q

+ ﬁg/ w, -0y, ds
1—‘out

1—p/ ! e 1—7/ ! fon
- /Q pra pralliy " ponl™ " prndA + /Q pon (2ol pal” "y dA
f P

+ ﬁl/ Ufp-nypds + 52/ Uy, - 10 ds
Lin

Fout
> c(lmlr + 181%:) - (4.24)
Thus, using (4.24),(4.22) and (4.23), we have
b(vh7(ph7/6)) > b(ufu(phuﬁ))

vieXn  lIvallx - lunllx

> (ol + I8l

b(uh7 (ph7 ﬁ))

pp,hV‘up7hdA + ,61/ uf,h‘nfds

P an

from which (4.14) immediately follows.
|

The discrete inf-sup condition for bs(-,-) follows from the continuous inf-sup condition and the
existence of a bounded interpolation operator I, : X, — X}, satisfying, for some a > 0,

W = Ipa(W) - pllyy-1/r a0,y < Caph®[Wllx,, and [[a(W)]x, < Cipllwlx,.  (4.25)

Lemma 7 There exists Cxrpn > 0 such that for h sufficiently small

inf su bl(u}“ )\h) > CXFh . 4.26
p

0AMELn wye, TUATX A llya/mor ey

Proof:
With A = A, let v, € WO (div, ;) be as defined by (3.16)—(3.19), and let v, , = Ip_7(vy) € Xpp
denote the Raviart-Thomas interpolant of v,,. Further, let v, = (0,v, ) € Xj. Then,

br(un, An) o br(vim An) 0 4 (Vpr -1y, Apr
wex, |unlx = valx HVp,hHWOv’”(dz'v,Qp)
_ <VP "1y, )‘h>F + <(Vp,h - Vp) Ny, )\h>F
[Vp,nllwor(divay) 1Vp,nllwor divo,)
!
o _(vpemy, Anr ((Vpn = Vp) "1y, EL An)oq,
= Clivpllwor (g, 1Vp.nllwor(div,o,)
> L My + ozt = Ye) B B Anon,
- 20w [V llwor @iv,a,)

With A = \p, let ¢ be given by (A.1)—(A.3), and let ¢, = I(¢) denote a continuous linear interpolant
of ¢ with respect to 7, . Note that \;, = ¢p, on I and T'pys.
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Now,

(Vph = vp) 1y, EE Midan, = ((Vph = vp) 1y 9m)a0, + ((Vpn = vp) -1y, (EE My — @n))an,
= 0 + (Vpu 0y, (BE M — ¢n))on, — (vp-mp, (BF Ay — @n))oq, -
As, EIC/)\h — @p =0 on I\I'y and v, - ny|r, = 0 then (v, -n,, (El’l,)\h — ¢n))aq, = 0. Further, as

Vo -n, =0on Ty (vpp -1, , (BN, — ¢n))oq, = 0, from which (4.26) then follows.
|

We now state and prove the existence and uniqueness of solutions to (4.8)-(4.9).

Theorem 2 There exists a unique solution (Wy, P, A, By) € Xp X My, x Ly, x R? satisfying (4.8)-
(4.9). In addition, there exists a constant C' > 0 such that

lunllx < € (ligrllx; + 1£71) - (4.27)

Proof: With the inf-sup conditions given in (4.14) and (4.26), the existence and uniqueness follows
exactly as for the continuous problem in Theorem 1. Similarly, the norm estimate for uy follows as
that for u.

|

4.1 A Priori Error Estimate

Next we investigate the error between the solution of the continuous variational formulation and its
discrete counterpart.

Theorem 3 Let

2—7r
T

T

|d(uy) — d(uyp)|
¢+ |d(uy)| + [d(ugp)l

|up - up,h|

E(u, uy,
(1, un) CF upl + [up

and

+
Loo(Qy)

L (Qy)

Gu,up) = /Q g7 (d(up))d(uy) — gp(d(ugp))d(ugp)ld(uy) — d(uy,)] dA
f

+ / |gp(ap)up — gp(upn)uppllupy —upp| dA.

P

Then for (u,p, \, 3) satisfying (2.35)-(2.36) and (ap, pp, A\n, By) satisfying (4.8)-(4.9), and h suffi-

ciently small, there exists a constant C > 0 such that

lu—wp % + Gww) < Clinfvex, (lu—vallx + E(wup) u—vallk)
+ info,em,llp — it + infe,en, A — ChHWI/r,r’(r)} (4.28)
lp=pnllar + 118 =0Bullgz + A= Aullyrrrr ey < C {5(11, uy) G(u, wp) /"

+ infoem,llp — anllnr + infe,er, A = Ch\lwm,wm} [(4.29)
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Note that the constant C' in Theorem 3 may depend upon ||ulx.

The following combined inf-sup condition is used in the proof of Theorem 3.

Lemma 8 There exists a constant C. > 0 such that

inf S b(Vh, qn,Yn) — br(vVh, Cn)

up > C.. (4.30)
(0,0,0)%(qn.Cn, Y, ) EMp x Ly x IR? va€X), (lgnllar + HChle/r,r’(r) + [[vallg2) Vel x ‘

Proof: As b(-,-,-) and b;(+,-) are continuous and satisfy inf-sup conditions (4.14) and (4.26), the
inf-sup condition (4.30) follows immediately. (See Theorem 4 in the Appendix.)
|

Proof of Theorem 3: )
Introduce the affine subspace Z;, C Z;, C X}, defined by

Zy = {(an,Ch, V) € Mp x Ly x R? : =b(Vi, @ ¥n) + br(va, ) = (£,vi) —aan,va) Vvi € X}

Note that (pp, An, Bn) € Zp.
For uy , from (2.16)

ld(uy) — d(ugn)ll
BT . @ 4 / lg7(d(up))d(uy) — gp(d(uss))d(ugy)||duy) — d(uyg,)| dA
c+ ” (uf)HL7'(Qf) + H (uf,h)HLr(Qf) Qy

< c /Q (g7(d(up))d(uy) — gp(d(uzp))d(uss) : (d(uy) — d(uyy)) dA
f
e /Q (g5(d(up))d(uy) — gp(d(upn))d(uss)) : (d(uy) —d(vss) dA
f
e /Q (g7(A(up)d(ug) — gs(d(upp)d(uss)) : (d(vys) —d(ugs)) dA
f
= L + I5.

To estimate I; we use (2.17).

/Q (g5(d(up)d(uy) — gs(d(ugn))d(us) : (d(uy) — d(vyy)) dA
f

1/r!
< C (/Q ‘gf(d(uf))d(uf) - gf(d(u]v,h))d(uf,h” ’d(uf) _ d(uf,h)‘ dA> )
f

|d(uy) —d(uys)l
c+ [d(uys)| + [d(uyn

<« /Q lg7(d(up))d(uy) — gp(d(ugp))d(usy)| [d(ug) — d(ug,)| dA
f

ﬂ
- H ld(ug) — d(v )l

[d(uy) —d(ven)lLr @, -

.

|d(uy) — d(uyp)|
¢+ ld(uy)| + |[d(ugp)|

+C
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Thus we have that

[d(uy) — d(uf W@,
D [ lantaup)dtag) - gy(dug)dlug)d(ay) - dlags)] A
c+ Hd(uf)H + ”d(uf h)”LT(Qf Qf
[d(uy) — d(usp)|
d . Is. 4.31
= e+ |d(up)| + |d(ugp) ” (up) =d(ven)llir i, + L2 (4.31)
Similarly, we obtain that for v, , € X, 5
[y — up,h”%r Q
—r ( p)2—r + / |g9p(up)up — gp(upp)uppl [up —upp| dA
¢+l + Iupnllz (o 2
(Qp) (Qp)
2—r
[up — up T
> — TT + I , 4.32
¢+ [up| + [upp I =vprllzray) + (432)
where I, is given by
Iy = C /Q (gp(up)up - gp(up,h)upﬁ) : (Vp,h - ule) dA.
P

Note that, with v, = (ven, vpr), Io + Is = a(u, vy —uy) — a(up, vy —uy), and for (qn, (u,7,) € Zn

a(w, vy, —up) — a(uy, v, —up) =
+br(vp — up, Ap)

= b(vh - uhapvﬁ) - b](Vh - uha)‘)
—qn, B —n) — br(vip —up, A — ()
P—qn B —p) — bu—vp,p

= b(vi, —up,p
= b(u—up,

b(Vh - uhapw@) - b](Vh — Up, )\) - b(vh - uhvphwah)

(as (pns An,Br) € Z)

- thB _’Yh)

— b[(u —up, A\ — Ch) + b[(u — Vp, A — Ch)

IN

elu— %

+ O (I =valk + = anli3r + 1A= GullZpu ey J2-33)

In the last step of (4.33) we use the continuity of the operators b(-,-,-) and by(-,-).

Combining (4.31)-(4.33) we obtain the estimate (4.28) for (qn, Cn,vs) € Zy,. The inf-sup condition
(4.30) then enables (qp, Cn,7yy,) to be lifted from Z;, to My x Ly x IRa. (See [5] for details.)

To establish (4.29) we begin with the inf-sup condition (4.30).

bvapiqaﬁi’y *bV,)\*C
lon —anllar + Hﬂh—’YhH]R2 + H>\h_ChHW1/r,r/(F) < Vi, (Ph n) ( hHVhHI;()) 1 (Vs A n)
< C(b(vha(p—Qh),(ﬂ—'Yh))_bI(Vha)\—)\h) 3 b(Vh,(p_ph)a(ﬂ_Bh))_bl(vha)\_Ch)>
B [vrllx vl x
a(u,vy) — a(up, v
< 0 (=l + 18 = llge + 1 = Gllynrry — = ) )
< C(lp=allar + 18 =vallge + 12 = Gl + £ ) Glu,u) ). (4.34)
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Combining (4.34)with the triangle inequality, we obtain (4.29).

Appendix

A Extension operator from I' to 0f2

Let © be a bounded Lipschitz domain in IR™ (n = 2 or 3), and let 9Q = ' UT, U Ty, where T, T,
and I'y are pairwise disjoint and dist(I',T'y) > 0. Additionally, let I'* = 9Q\T".

We use standard notation to denote the function spaces used, for example W*P(Q), WP(9Q), etc.,
with W()_Ol’q((?Q) denoting the dual space of Wé’op (092), where ¢ is the unitary conjugate of p, i.e.

1/qg :=1 - 1/p.
The expression A < B is used to denote the inequality A < (constant) - B.

Next we investigate a suitable extension of a function A defined on I' to a function defined on 9f2.

Assume that p > 2.

Lemma 9 Given \ € Wl/q’p(l“) define ELX := ~op, where 7 is the trace operator from WhpP(Q)
to WYaP(9Q), and ¢ € WP(Q) is the weak solution to

—V - |VeP 2V = 0 inQ, (A.1)
A on T’

v = {O on Iy (A-2)

IVo[P 200 = 0 onTy. (A.3)

Then EEX € WY/ 4P(0Q), and HE{ZAHWl/q,p(aQ) = M lw/ae

Proof:
The proof follows from the strong monotonicity [19] of the operator £ : X — X*, L(u) :=
—V - |[Vul|P~2Vu, where X = {f € WP(Q) : flrur, = 0} [23].

|

For A € WYeP(T), let Ef A denote the extension of A by zero on I'.

Remark: Note that Efj 1A € WY/9P(9) if and only if A € Wy *"(T).

Lemma 10 [9] For ¢ € WYoP(9Q) there exists (r € WY9P(I') and (pe € Wolo/q’p(f‘c) such that
¢ = ER¢r + Ego reGre. Moreover, this decomposition is unique.

Proof: Let ¢ € W'/9P(9Q). Define, ¢t := (|r and (e := &|pe where & := ¢ — EP(p. Note that
C|lr € WYeP(T) and

HEgCF”Wl/q,p(aQ) = ||<FHW1/‘1¢P(F) < ”C”Wl/qw(aﬁ)v
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hence & € WP (9Q). Also, B, p(re = € as ¢ and ER(r agree on I'. Thus, from the remark above,
(pe € WP (T).

To show uniqueness of the decomposition, observe that if 0 = EX(r + E}, pCre then (r is the trace
of the weak solution of (A.1)-(A.3) for A = 0. Hence (r = 0.
|

Next we introduce the concept of the restriction of an operator in W‘l/’m(aQ) to be equal to zero.

Definition 1 (9] If f € W—1/949(9Q), then f|re = 0 means by definition that
(f Ebype€oa = 0, forall &€ Wo® (). (A.4)

The following lemma describes how an operator in W1/ 249(9Q) can be decomposed into an operator
in W~1/949(T") and an operator in W ~1/24(T¢).

Lemma 11 [9] For f € W=1/99(9Q) there exists fr € W~Y%9(T) and fre € WO_Ol/q’q(FC) such that
for ¢ € WYaP(9Q), with ¢ = EP(r + Egoyrcgrc, as defined in Lemma 10, we have

(f, Qoo = (fr, Cr)r + (fre, Cre)re - (A.5)

Proof: For (r € WY%P(T) and (pe € Wi/ "P(T°), define

(froCrr = (f,Eprrioe  and (fre,Cre)re = (f, By peCre)on - (A.6)

Then,
(fr o < fllw-raa@ollErCrllwier oo = I1f lw—1/0e@olCrllwi/ar )

thus fr € W=Y/49(T). Analogously, fre € Wy %9(I*®). Additionally,

<fr7 <F>F + <fFC> CFC>FC = <fa EIECF>8Q + <f> E(I))07FCCFC>6Q = <fa C>6Q

Note that for f € W~1/99(9Q) with f|pe = 0 (see Definition 1), from (A.6),

(f,Qan = (fr,¢r)r  forall ¢ € WHVer(99). (A.7)

Thus functionals in W~1/%4(9Q) which are zero when restricted to IQ\I' can be identified with
functionals in W~Y%4(T).

B Combined inf-sup conditions

In deriving a priori error estimates for mixed methods, whose analysis relies on several inf-sup
conditions, combined inf-sup conditions are needed. In this section we show that the required inf-
sup conditions follow readily from the continuity of the bilinear forms and the individual inf-sup
conditions.
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Theorem 4 Let V,Q1,Q2 be Banach spaces; bi(-,-) : V x Q1 — R, ba(-,:) : V x Q2 — R and
Zy = {veV|bi(v,q) =0, Vg € Q1}. Assume that ba(-,-) is continuous and there exists B1, B2 > 0
such that

sup  bi(v,q1) > Billaillg,. Yo € Qu,
veV [lv|ly=1

sup  ba(v,q2) > Pallaallg.s Va2 € Q2.
UEZl,”’U”V:l

Then there exists § > 0 such that

VS”uﬁ’ (b1(v,q1) + ba(v,q2)) = Bllarllg + lle2llg.) ,  V(g1,42) € Q1 x Q2.
veV ||v||ly=1

Proof:

By the continuity of ba(+, ), there exists Co > 0 such that

b2(UaQ2) < CQHUHVHQQHCb ) V(chﬁ) eV xQq.

Let (q1,q2) € Q1 X Q2 be given, and vy € V with |vi||y = 1, v2 € Z; with ||va]|y = 1, satisfy

B B2
bi(vi,q1) > ?H%HQU ba(va, q2) > ?H(&HQQ-

Then for u = v; + (14 2Cy/B2)v2 we have
&
bi(u,q1) = bi(vi,q1) > %HthQl ;

2C
ba(u,q2) = ba(vi,q2) + (1+ 5722)52(02412) > %H(&HQQ.

Finally, as ||ully < 2(1+2C%/052), with ug = u/|jul|v
bi(uo, 1) + b2(uo,q2) = B(larlle, + lazllq.)
where 3 = min{g1, B2}/(4(1 + C2/2)).-

Corollary 1 Let Zy, Q;, i = 1,...,n be Banach spaces, b;(-,-) : Zo x Q; — Ri=1,...,n and
Zi = A{v € Zi_1|bi(v,q) = 0,Yq € Q;},1=1,...,n— 1. Assume that b;(-,-) is continuous and
there exist (; such that

sup bZ(UaQ) Z /BZHq,‘Qzu VQEQM 1= 1)7”
UeZi—h”U”ZO:l

Then there exists 3 > 0 such that

sup Y bi(v,q) = B(lallen + - + lanllQ) , V(g an) €QL X ... x Qn. (BSB)

v€Zo,||vllzg=1 "7

Proof: The proof of (B.8) follows from Theorem 4 and induction.
|
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