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Abstract

We study a system composed of a non-linear Stokes flow in one subdomain coupled with a non-
linear porous medium flow in another subdomain. Special attention is paid to the mathematical
consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent
effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case
where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We
recast the coupled Stokes-Darcy system as a reduced matching problem on the interface using
a mortar space approach. We prove a number of properties of the nonlinear interface operator
associated with the reduced problem, which directly yield the existence, uniqueness and regularity
of a variational solution to the system. We further propose and analyze a numerical algorithm
based on mortar finite elements for the interface problem and conforming finite elements for
the subdomain problems. Optimal a priori error estimates are established for the interface and
subdomain problems, and a number of compatibility conditions for the finite element spaces used
are discussed. Numerical simulations are presented to illustrate the algorithm and to compare
two treatments of the defective boundary conditions.

Key words. Generalized non-linear Stokes flow; coupled Stokes and Darcy flow; defective
boundary condition
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1 Introduction

The problem of approximating coupled Stokes—Darcy flow has received considerable attention in
the mathematics community over the past ten years. Many of the applications considered use a
Newtonian fluid in both the Stokes and Darcy regions, where the motivating problem is often a
coupled surface water / groundwater model (see, for instance, [6, 14, 18, 22, 24, 27, 28]). Our
interest in coupled flows arises from filtration applications, which continues to be an active area
of research (see, for instance, [3, 12, 20, 26, 23]). The purpose of the filtration mechanism can be
the removal of particulates [23, 3, 26, 29] or impurities [20], but in all cases the availability of an
accurate and efficient simulation tool would aid in the design and assessment of effective filtration
devices.
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Our particular focus is on the effective removal of debris particles from a molten polymer [29, 10, 5],
which is a non-Newtonian fluid. Earlier work on this filtration problem focused only on the flow in
the porous, or Darcy, region [1, 21, 25, 29, 30], but analysis of the fully coupled problem is essential to
accurately simulate the transport of the suspended particles into the filter. The fully coupled problem
for non-Newtonian Stokes and Darcy flows was initially analyzed in [11]. Motivated by numerical
implementation considerations, we have recast this coupled problem as a matching problem on the
interface between the domains. This approach naturally gives rise to a parallel algorithm for the
subproblems in the Stokes domain {2y and the Darcy domain (),, and it also allows one to combine
existing codes for Stokes and Darcy simulations to solve the coupled problem. Key ideas from
[7, 22, 14, 17] are used in the new formulation.

In the literature, two basic approaches have been used to analyze the coupled problem considered
herein: Stokes—Darcy coupling and Stokes—Laplace coupling. In Stokes—Darcy coupling, the velocity
and pressure are resolved in both the fluid flow and the porous media domains. For the Stokes—
Laplace formulation the velocity and pressure are the unknowns in the fluid flow domain and the
pressure is the only unknown in the porous media domain.

In [7] Discacciati and Quateroni studied the coupled Stokes-Laplace formulation. After show-
ing existence and uniqueness for the coupled problem they reformulated the problem, using the
Steklov-Poincaré operator, as an interface problem for the interfacial pressure. Parallel and se-
rial implementations for the numerical approximation of the interface problem were reported in
[8, 9]. There has been considerable work done on efficient numerical solution algorithms for the
Stokes—Laplace formulation. We refer the reader to [4, 19, 24] and the references therein.

Using a Lagrange multiplier technique Layton, Schieweck, and Yotov [22] (see [28] also) introduced
and studied the Stokes—Darcy coupling approach. Galvis and Sarkis in [14] extended this approach
and showed how the Lagrange multiplier space could be more appropriately defined. In [13] they
investigated efficient preconditioning strategies for the Stokes—Darcy formulation.

Our interest herein is the Stokes-Darcy coupling approach. Denoting by uy, ps, u,, pp the velocity
and pressure in the fluid flow domain 2y and the porous media domain €2, respectively, we have
the following boundary conditions holding along the interface I':

uy-ny + u,-n, =0, (Conservation of mass) (1.1)

pr — (oyny) -ny =p,, (Balance of interfacial pressure) (1.2)

and a boundary condition for the tangential stress in 5 on I'. (The boundary condition for the
tangential stress becomes a natural boundary condition for the variational formulation on €¢.) In
(1.2) oy denotes the extra stress tensor in 2. For the coupled problem under consideration, fully
described in Section 2 below, given an interfacial pressure py, the Stokes and Darcy problems are
independently solvable in 2y and £, respectively, to yield u;i(p[), p}l(pj), w;(pr), py(pr). Thus, we
investigate the problem of determining A such that

A(A) = uj(N) -ny + uy(A)-ny = 0. (1.3)

The matching problem lies on the interface I'. For the discrete approximation we introduce a
“mortar space” for the representation of the interfacial pressure of I' [17, 16]. The mortar space
discretization is independent of the partitions of €2y and 2,. However a compatibility condition for
the mortar space discretization and the partitions of 5 and Q, is required (see Assumptions 4.4,
4.5).



For the modeling equations describing the fluid flow we consider the case of a shear thinning fluid,
where the fluid’s viscosity is a nonlinear function of the magnitude of the deformation tensor.
Additionally we assume that only flow rates are specified for the inflow and outflow boundaries (i.e.
defective boundary conditions).

The paper is organized as follows. In Section 2 we formally describe the modeling equations and
assumptions on the non-linear functions modeling the fluid’s viscosity. Variational formulations for
the Stokes problem in €2y, and Darcy problem in ), are given in Section 3 where the interfacial
pressure, py, is treated as a known quantity for both problems. Existence and uniqueness of the
problems is verified and solutions are shown to depend continuously on py. The matching problem
of determining py such that (1.1) is satisfied is then formulated and shown to have a unique solution.
In Section 4 we present the finite element approximation scheme and analysis. The analysis for the
discrete problem follows the same pattern as the continuous problem. First the discrete Stokes and
Darcy problems are separately considered. Existence and uniqueness of the discrete approximations
is verified and error estimates between the continuous solutions and discrete approximations are
derived. The discrete matching problem is then formulated and shown to have a unique solution. A
combined error estimate is then given for the solution between the coupled Stokes—Darcy problem
and its discrete approximation. In Section 5 a numerical example is given for two different treatments
of the defective boundary conditions.

2 Modeling Equations

For convenience, we work with Hilbert spaces instead of general Sobolev spaces for our weak formu-
lations. This requires us to assume that the viscosity is bounded from above. A general formulation
involving the spaces W7 () and W/™"'(T') can be found in [11]. We would like to mention that
there exists a certain physical limit for the viscosity, so our assumption is actually physically rea-
sonable. The power law, for example, is an approximation of the reality, and the implication from
the power law that the viscosity goes to infinity when the deformation goes to zero is not physically
correct as the power law does not apply to the case of a zero strain tensor.

For convenience of implementation, we use Einstein’s notation in addition to the vector notation.
All repeated subscript indices imply summation over all dimensions except the subscript m for the
tangential vector t,,;, where we list the summation of m explicitly.

Let 2 C R", n = 2 or 3, denote the flow domain of interest. Let Q; C © and €, C 2 be bounded
Lipschitz domains for the non-linear Stokes flow and non-linear Darcy flow, respectively. In this
work, we consider only two subdomains, and assume = Qy U Q, UT';, where I'; := 0Q; N 941,
denoting a smooth interface between the subdomains.



We first consider the non-linear Stokes flow in €.

Op 0oy )
- =Ji Q 2.4
aﬂfi 3xj fz’ Hh2efs ( )

8’114‘
=0 in 2.5
8:1:Z- ’ t £ ( )
oij = 2vs (|Dul) (Du);;,  in Qy, (2.6)
u; = 0, on 'y p, (2.7)
oinj —pni = T, onlyn, (2.8)
(a5u1+aijnj)tmi =0, onl'y, m=1,---,d—1, (2.9)
/ uin;ds = / qrxds = qprmeas(L'y ), k=1,2,---, Ky. (2.10)
Lrk Ty

Note that ug and 75 denote vector functions on the domain boundary, where 02y =I'y p ULy y U
I't pUT'; (this is understood as 0y =Ty p UT'f y UT' s p UT'; and similar notational simplification

applied to the rest of this paper), I's p 1= Ufzf 1 Iz and Ky is the number of defective boundaries
in the Stokes flow domain. The boundaries I'y p, I'¢ n, I'f, , and I'y are pairwise disjoint, and their
definitions are clear from the following modeling equations for Stokes flow. We use D to denote the

symmetric gradient operator. In other words, Du is the deformation tensor (Du),; = % (gg; + g;z )
The viscosity vy depends nonlinearly on |[Du|. We assume that vy is bounded from above and from
below; that is, there exist vyin > 0 and vyax such that vy, < vy (|Dul) < vpax for all u. We
assume that meas(I's ) > 0 and meas(I'y) > 0. On I'y, we impose the Beavers-Joseph-Saffman
(BJS) condition (2.9). On each I'yj, we impose a defective boundary condition, where the averaged
flow rate per area is imposed; or equivalently, the integral of the flow rate gy is specified on I'y .
Note that we assume that ag is a scalar for simplicity of presentation, but all results in this paper

can be easily extended to treat a full tensor ag ;.

The Darcy flow in €, is modeled using the equations:

0 :

v (Jul) Rijuj + 5= = fi in 9, (2.11)
1

ou; .
8@; =0, inQ, (2.12)
u;n; = 0, on I'p w, (2.13)
P =DB; on I'y p, (2.14)
/ un;ds = / Ipkds = qp pmeas(Iy 1), k=1,2,---, Kp, (2.15)

r r

P,k D,k

where 0, =T, v UL', p UT', p UT';. We assume that the permeability tensor K associated with
the porous medium is symmetric positive definite, and we denote its inverse by the flow resistivity
tensor R; that is, R = K~1. We also assume that v, (Ju|) is bounded from above by Vmax and from
below by vmin > 0. Similar to the Stokes region, we have imposed a defective boundary condition
on the Darcy region boundary Iy, with g, € R being the imposed averaged flow rate; g, € RE»

. . . . K,
may be also viewed as a piecewise constant function defined on I'), p = Uk 2 Dk



To couple the two flow systems, we impose conservation of mass and balance of the normal forces
across the interface I';:

[winil|p, =0,
[p = oyningllp, =0,

where we extend o;; by zero to €2, for notational ease; that is O'ij\ﬂp = 0. We will use py := p[Qf,
uy = u|Qf, fr = f\Qf, Pp = p|Qp7 u, = u\Qp, f, = f|Qp to emphasize the corresponding variables
applied to a specific region, although we will simply write p, u and f when the region we refer to is
clear from the context. On the interface I'r, ny = npo, = —n, = —nyg, denotes the unit normal
vector pointing from Q toward €2,. When we restrict our attention to the Stokes (or Darcy) region,
we simply write ny (or n,) as n.

Throughout the paper, we use C to denote a generic positive constant, and € to denote a fixed
positive constant that may be chosen arbitrarily small. We assume that the nonlinear functions
vf (|Dul) Du and v, (Ju|) u are uniformly continuous with regard to Du and u, respectively; that
is, there exists a constant C' > 0 such that
v (IT)T — vy (IS)S| < C|T -S|, YT € R™, vS ¢ R4
v (lu)u—1p, (V) v| < Clu—v|, VYuecRY ¥veRL
In addition, we assume that vy (|-|) and v, (|-|) are strictly monotone; namely, there exists a constant
C > 0 such that:
(v (TN T — v (IS)S): (T—-8) >C(T —8S): (T —8), VTR vSeR>

(v (u)u—1p (V) v)-(u=v)>Cu—-v)-(u—v), YuecRY ¥vveRL

3 Variational Formulations with Mortar Spaces

We first consider the Stokes flow and the Darcy flow problems separately as if they were two
independent processes. This corresponds to the modularity of their code implementation, where it
is desirable to implement and test individual codes for separate Stokes flow and Darcy flow before
numerically coupling them.

The variational formulations for the fully coupled problem is presented and analyzed in [11].

3.1 Stokes flow

We now restrict our attention to the Stokes flow problem, by assuming the interface pressure p;
is given. The equations to be solved include (2.4)-(2.10) together with the balance of the normal
forces across the interface I';:

;inin; —pP = —PI, on F[.

Let Xy ={v:ve (@@, vl,, =0}.



To derive the weak formulation, we multiply (2.4) by a vector function v € Xy, integrate over {25
and apply the divergence theorem (Green’s theorem) to obtain

. 8p aa'ij '
G, = [, (o~ 52 )

/ (O’Z‘j(DV)ij - pgvé) dx — / (oijn; — pni) vids
Qs T o0y

/ <2yf (|Dul) (Du),; (Dv);; —pgvi> da — / 5. 0ids
Qf IS

Ty

— / (oijnj — pn;) vids — / (oijnj — png) vids,
ry Ty r

Noting that
d—1

Z tmitmj + ning = d;4,
m=1

we can treat the BJS slip boundary condition as

—/ (oijn; — pn;) vids = —/ (oijn; — pn;) dipvkds
Iy Iy
d—1
= — Z / (O'Z‘jn]‘ — pni) tmitmkvkds — / (crz-jnj —pni) ninkvkds
m=17T1 I,

d—1
= - Z/ (gijnjtmi) (Vktmk) ds —/ (oijnin; — p) (nyvy) ds
m=171T1 Iy

d—1

= Z/ as (witmi) (Vptme) ds —i—/ PInEULds.
Iy

m=1 Ly

As for the defective boundary conditions on I'y r, a total flow rate is specified on each of its pieces
It j, but the traction vector on the boundary is not imposed. We follow Ervin et al.’s approach
[11] and use a Lagrange multiplier method for treating the defective boundary conditions on I'f
(which for a sufficiently smooth function is equivalent to the condition that the traction vector is a

constant vector normal to the boundary surface). Thus the traction integral over I'y r is replaced
by

Ky
—/ (aijnj — pni) ’UZ‘dS —_— — Z’Bf’k/ vmids = — ﬁfvmids, (316)
Lyr k=1 sk Lr.r

where in the last equality the Lagrange multiplier 8y € RX7 is to be viewed as a piecewise constant
function on I'y g, with B¢n; representing the traction vector on the boundary.



Combining the above results, we have

ov;
(fiWi)Qf :/Q 2yf(|Du])(Du)ij (DV)ijdl'—/Q p8x~d$
f f ‘

— / TB,ivids — Brvingds
IS Iy r

d—1
+ Z/ as (witm) (Uktmk)d8+/ prvingds.
m=1"TIT1

Iy

The averaged flow rates are imposed by

Ky Ky
/ ruinids =) / Yrwdreds =Y vrxqzemeas(L ), (3.17)
Lrr k=1"T7k k=1

where 7 is a piecewise constant function on I'y . The divergence-free equation (2.5) is weakly

imposed using
Oui

; 0zi

qg=0, Vg € L*(Qy).
We now introduce

d—1
ar(u,v) := /Qf 2vf (|Dul) (Du),; (Dv);jdx + mz_:l /FI as (Uitmi) (Vitmk) ds,

8%‘
by (v,p) == A 5 DA%,
f 3
Ky
by (v,Bf) := g 5fvinid3:26f,kfr vin;ds,
fF k=1 Ik

Ly (v):= (fivvi)Qf + <TB7V>Ff,N — (pr,v-m)r,,

d d
where (7p,v)r,, denotes a duality pairing between (Hfé(I‘ﬁN)) and <H%(Ff7N)) , and
(pr,v-n)p, a duality pairing between H_%(FI) and H%(FI).

d
The weak formulation for the Stokes flow is: Given f € X’}, T € (H_%(Fva)) ., qF € RE7, and
pr € H_%(FI), determine (u,p, 8y) € Xy x L*(Qy) x RXf such that

ay(u,v) —by(v,p) —brp(v,Bf) =1f(v), Vv e Xy, (3.18)
by (w,q) + by (W) = brp (amy,vp) . V(g,7y) € L2(2y) x RYY. (3.19)

Again, as remarked above, the term ¢yny is to be interpreted for ¢y a piecewise constant function
on I f,N-



We first establish an inf-sup condition before presenting our theorem on the existence, uniqueness
and regularity of a solution. Let

Zyp:={veX;:brp(v,Bs)=0,V8; e RFS},
Zio:= {V € Xy V‘Ff’F = 0},
Zj:={veXy:br(v,q)+brp(v,B;) =08 € R* vge L*(Q)}.

Lemma 1. There exists a constant C > 0 such that

inf qup D Hbrp VB (3.20)

5reR 7 aci2(9) veXs vl (llallaay) + 1871)

Proof. Taking advantage of the fact that R/ is finite-dimensional, we easily conclude

b
inf sup LBV S ooy (3.21)
BreRXF veX; HVHXf 1B

That is, for each j = 1,--- , Ky, we find a vl e X such as v =0 and frf _ Uz(j)nids #*
3]

(J')‘

) Uk;tj Lrk
0. These v\9)’s must exist because 'y j’s are pair-wise disjointed. It is then a trivial exercise to
construct a function v as a linear combination of these vU)’s for a given By € RXs to achieve

b (v.B7) > C v, 1541

It is well known that an inf-sup condition holds for bs (v,q) on Zyso x L*(Qy). Since Zso C Zy 5,
we know there exists an inf-sup condition for bs (v,q) on Zfp x L?(Qf). We now recall the fact
that the continuity of the bilinear forms and individual inf-sup conditions imply the combined inf-
sup condition [11] (see also Theorem 18) and conclude the existence of an inf-sup condition for

bf (Vv q) + bf,B (V7 ﬁf) u

Theorem 1. There exists a unique solution (u,p, B) € Xy x L2(Q) x RET satisfying (3.18)-(3.19).
In addition, there exists a constant C > 0 such that

d—1
2
lallx, + | S IVasuitmil 2, + 2l 20, + 1671
m=1

< . . (3
<C (IIflle + ”TBH(H—%(FLN))d el o,y + |Qf|> (3.22)

Proof. The existence and uniqueness of a solution follows from the continuity and strict monotonicity
of ay (-,-) on Zs x Zy, together with the inf-sup condition (3.20).

From the weak form (3.18), the inf-sup condition (3.20), and the assumption that v;(|Dul|) is



bounded from above, we have

b (Vap)+b ,B (V7/B )
1PNl 2,y + 1Bfl < C sup ! ! !
VEXf HVHXf
g WY )

< - . .
CQMkﬁWM@+WmWFaMMY+WNFam> (323)

We choose v = u, ¢ = p, and vy = ¢, and add (3.18)-(3.19) together to obtain
as (u,u) = Iy (u) + by, g (¢rn5, B)

= (fi?ui)Qf + <TBau>Ff7N - <p17u : n>F[ + - 6fodS
fF

<C f|<c«

__lw&<nk,Wnﬂ@%mMy+mmyam)
+C1Byl gl

Due to the assumption that meas(I's p) > 0 and up = 0, we know from Korn’s inequality:

2 < C|Du]

||u||Xf == ||uH(H1(Qf)) (L2(Qf))d><d,

which implies the strict positivity of a (u,u):

d—1
ag(u,u) = /Qf 2v (|Dul) (Du),;; (Du);jdz + mzl /1“5 ag (Uitmi) (uktmr) ds

d—1
2 2
> 2Vmin ||Du||(L2(Qf))d><d + E ” Vv aSuitmiHLQ(FI)
m=1

d—1
2 2
> Cllulx, + Z IVeasuitmillp2r,) -
m=1

We then have
d—1
2 2
||u”Xf + Z H vaSuitmiHL2(F1)
m=1

2 2
SC(W&ﬁWnﬁwl d+wﬂ;am+mﬁ)+qmﬁ (3.24)

2(Ff,N))
The theorem follows from (3.23) and (3.24). m

Remark: (See [11]) For sufficiently smooth data, f, 75, p; and solution u, p, with

ony = syny + sy, wheres, = (ony)-ny and sy = ony — s,ny,



and

(TB, V)T 5 I—/ Tpvids , (pr,Vv-np)r; f—/ pruin;ds,
LN Iy
the unique solution of (3.18)-(3.19) satisfies
—p + S = —/Bﬁk and sy = 0 on Ff7k, k:1,2,...,Kf. (3.25)

Thus the variational form (3.18)-(3.19) corresponds to the boundary value problem (2.4)-(2.10) with
the additional constraint (3.25).

3.2 The reduced Stokes problem on the interface

d
We let f € X%, 75 € <H_%(I’f7N)> , and gr € REF be fixed given data as before, but we consider

pr € H %(F 1) C L*(T';) as a variable input. From Theorem 1, we know that there exists a unique
solution (u,p,Br) € Xy x L2(Qy) x REF of (3.18)-(3.19) that is a function of p;. We denote the

solution as (u*(p;),p*(pj),ﬁ;‘c(pj)). Before studying the relationship between u*(pr) and pr, we
need a lemma, which we use below in the proof of Theorem 2:

Lemma 2. If meas(I'yn) > 0, then there exists a constant C' > 0 such that for all A € H_%(FI):

sup (A, v-n)r, < C sup (\,v-n)r,
veXy ||V||Xf VEZy HVHXf
As a result, we have
1 AV
LI,y gy < sup VI
C H72(T1) ™ vez, HVHXf H™2(I'p)
Proof. We first note two inf-sup conditions:
A .
inf sup A v-njr, >C >0, (3.26)
and
inf sup BB S ooy (3.27)
BreRT 7l Iviix, 15l
where

zZh = {v €X;: (\v n)p, =0, VA€ H—%(FI)}.

Inequality (3.26) is well known, and (3.27) can be established by taking advantage of the finite
dimensionality of RXf as we did for Lemma 1. Theorem 18 and (3.26)-(3.27) imply

NeH ™ 3(1y), BreR™s vEXy v, (H/\HH’%(FI) + W)

>C > 0. (3.28)

10



As meas(I'y ) > 0, we can show the following inf-sup condition by applying an argument similar
to the one used to prove Lemma 1:

b
inf sup 7 (v.9)

>C >0, (3.29)
0€L2(2y) _gvrnrr [V, lallce ;)
f

where
zZie {v Xt (A ven)r, +bsp(v,Br) =0, YA€ H2(T')), ¥j; € ]RKf} .
Now Theorem 18 and (3.28)-(3.29) imply

AV b b
L inf sup < vV n>FI + f (V7q> + f,B <V7Bf)
serbenaer@p), 5t veXs (i, (N3 g, + lall 2y +1841)

>C > 0. (3.30)

Applying Theorem 18 again, we see that (3.30) leads to

inf sup (A v-n)r,

>C >0,
AeH™ Q(FI) veZy ||V||Xf H)\HH_%(FI)
or equivalently,
1 (A, v-n)r, 1
N1 < = sup ~————L ¥YAe H 2(Iy).
H2(T1) = C yez, HVHXf
|

Theorem 2. There ezists a constant C > 0 such that for all X\ € H_%(F]) and | € H_%(F[),

o)~ w ()l < CIA= a0 (3:31)
If meas(I'y y) > 0, we further have

1 *

Sl g < I O) — )l < CIA =l (3.32)

Proof. To show (3.31), we pick u = u*(A), v = u*(p), p = p*(A), and By = B}(}) in (3.18), and
pick u=u*(n), ¢ = p*(\), and v = B;i()\) in (3.19), and then add them together to obtain

ag (W\),u(w) =y (u(n)) + by,p (arny, B(N)) -
The strict monotonicity of af(-,-) then implies

é la* (V) = w* (W), < ag (@ V), u* (V) = u*(w) = ay (u* (), u*(A) —u* ()

= —((A=p), (@A) —u*(w)) - np)r,
< Ol () = (wllx, A = pll -4 )

which yields the desired bound in (3.31).

11



To show the first inequality in (3.32), we consider

—ay (0" (\),v) +ay (u(p),v) + by (v,p"(N) = p* () + by 5 (v, 55(N) — BF(w))
=((A=p),v-ngr,
For v e Zy C Xy, we have

(A=p),v-np)r, = —ap (W(A),v) +ay (0" (p), v)

< Ol () —w' (), Vlx, - (3.33)
Consequently, using Lemma 2 and (3.33)
A— »q A— H), V-1
Pl gy = s (G S
geH?2 (') H2(y) veXs H3(T))
< € sup OV I 0 () < w ),
VEZf ||V n” i !

If the normal velocity component q; € H 2 (T'y) is given on the interface I'7, rather than the pressure,
we can solve for the pressure by seeking A € H 7%(F 1) such that

Ap(\p) = —(uar)r, Ype H2(Iy), (3.34)
with the form Ay (-,-) defined by

Ap (A p) = =(p,up(N) -np)r,

We now prove a few properties of Ay (-,-).

Theorem 3. Ay (A p) is a nonlinear functional of X and a linear functional of p. Ag(-,-) is
continuous on H_%(F[) X H_%(FI). In addition, A¢(-,-) is monotone on H_%(FI) X H_%(F[). If
meas(I'y n) > 0, Ag(-,-) is strictly monotone on Hié(]ﬁ]) X Hfé(f‘l).

Proof. 1t is clear that Ay (A, p) is linear in . Its continuity follows from Theorem 2. We now show
the strict monotonicity assuming meas(I's 5) > 0. From the weak formulation (3.18), we know

Ap (A, p) = —(u,uf(A) -np)r,
= ag (W (), u*(N) = by (W (A),p" (1)) — by, (u(N), B7(w))
— (£, 0" (N)g, — (7B, w3 (AN)r; 5
= ay (u* (), u”(N) = by.p (arny, B5(1) — (£, 0" (N)g, — (T8, 0p(N)r, »-
We then obtain
Ap WA= ) = Ap (A — ) = Ap (A A) = Ap (A jr) — Ap (. 0) + Af (. )
= ay (u*(A),u"(A) — u* () — ay (u*(p), u"(A) —u*(n))
> () =0 (g
> CIA =l g

12



where we used Theorem 2 to obtain the last inequality above. If meas(I'y y) = 0, the last inequality
above may fail to hold, and we then have only monotonicity (not strict monotonicity). m

Theorem 4. Ifmeas(I's x) > 0, then there is a unique solution X € Hz (T'r) to the reduced problem
(3.34) for any given qr € H%(I‘I).

Proof. This theorem follows directly from the continuity and the strict monotonicity of Ay (-,-). m

3.3 Darcy flow

We next restrict our attention to the Darcy flow problem, assuming that the pressure is specified
on the interface. Specifically, we consider (2.11)-(2.15) together with:

p = pr, on I'y.

Multiplying (2.11) by a smooth vector function v, with v -mny|r, = 0, integrate over ), and apply
the divergence theorem we obtain

op
(v, = [ ()i + 52 ) i (335
Qp Xy
8%‘
= Vp(‘uDRijujUidl" - P dx + pu;n;dx
Qp Qp Ox; a9,

61;@-
= vp([u|)Rijuvide — D
R [ o3

P

+/ pvmids—&—/ prv;n;ds.
Ly Fr Iy

In part, to incorporate the specified flow rate constraints into the formulation, for each I',; we
replace [ . buinids by
D,

J

dr + / ppY;Nn;ds
Tp.0

poin;ds —> / Bprvinids ,Bpr €ER, k=1,..., K,,
Lpk

p,k
equivalently / puin;ds — / Bpvinids, (3.36)
FPYF Fp F

where 3, € R&> in (3.36) is interpreted as a piecewise constant function on Ipr.

The averaged flow rates are imposed by

KP KP
/ PpUinids = Z/ Vo, kp,kds = Z’Yp,kqp,kmeaS(Fp,k)-
prF k=1 Fp,k k=1

Similar to the previous treatment, the divergence-free equation (2.12) is weakly imposed using

ou;

=0, Vqe L*Q,).
L om0 q € L*(S2y)
P

13



For u € H(div,Q), u-n, € HY2(0Q,). For p € H'/?*(I';) duality pairing does not define
(w-ny,pr)r,, as u-n, acts on functions in H'/2(95),). Following the work of Galvis and Sarkis
([14], Lemma 2.1), given T'y C 99, r € H'/2(T), let E%fr € H'Y2(05),) denote the extension of r
to 9Q,. Then, for f € H~1/2(99,), we denote

(firr, = (B 'r)oa,
Also, as given in [14], for f € H~Y/2(09,), f|r, = 0 is defined as
(f Egpr whon, = 0, for all w e Hy)*(Ty),

where Eéé?st denotes the extension by 0 of w to 9, \Ls.

We now introduce
Xp = {V : v e H(div,§), v- n’FpN - 0}7

ap (u,v) ::/Q v(|u|)Rijujvide,

P

(91)@
b = d
P(Vap) Qp 8.%'Zp x)
bp,B (Vv /Bp) = _<V *1p, /BP>Fp,F7

lp (V> = (fi?vi)ﬂp - <V . np7pB>Fp7D - <V : npapI>FI-

The weak formulation for the Darcy flow is: Given f € X7, pp € H%(F@D), qp € R&» and
pr € H2(T';), determine (u,p, Bp) € X, x L2(Q,) x RE? such that

ap (w,v) —bp (v,p) = bp,B (v, Bp) =1p (v), Vv e X,, (3.37)

by (W, q) + bp,B (0, 7p) = bp,B (Gp1p, ) V(¢ 7p) € LQ(QP) x REP. (3.38)

Before presenting our results, we introduce
Zppi={veX,: bp(v,8,)=0,Y8, € RF?}
Zyo = {V eXp: v n|Fp,F = 0},
Zy={veX,:b(v,q) +byp(v,B)=0,V8, € R Vg e L*(Qy)}.
Lemma 3. There exists a constant C' > 0 such that

inf sup bp (v 4) + by (V. By) >C. (3.39)

BreR!? geL2(Qy) veXy ||v]|x (HQHL2(Qf) + |5p‘)

Proof. Similar to our previous arguments, we can utilize the finite dimensionality of R%» to obtain
the following inf-sup condition:

b
inf  sup MZC>O.
BreR*r vex, [Vlx, [Bpl

14



It is well known that an inf-sup condition holds for b, (v, q) on Zy,o x L*(Q,). Since Z,o C Zy, 5,
we know there exists an inf-sup condition for b, (v,q) on Z, g x L*(Q,). Theorem 18 then implies
the existence of an inf-sup condition for b, (v,q) + by g (v, 5p). B

Theorem 5. There exists a unique solution (u,p, 8y) € X, x L2(Q,) x RE» satisfying (3.37)-(3.38).
In addition, there exists a constant C > 0 such that

lallx, + oll20, + 1851 < C (I8l + 0l 3 )+ Il el ). (30

Proof. The existence and uniqueness of the solution follows from the continuity and strict mono-
tonicity of a, (-, ) on Z, x Z, and the inf-sup condition (3.39).

From the weak formulation (3.37), the inf-sup condition (3.39) and the assumption that v,(|u|) and

R are both bounded from above, we have

by (v, p) + by (v, B
HpHL?(Qp) +|Bp| < C sup p (V. D) + bp,B (V, Bp)
veXy ”VHXP
= C sup ap (0, v) —lp (v)
veXy HVHXP

<0 (Iullx, + 18l + 0l ) ol ) - (GaD)

We pick ¢ = V- u and v, =0 in (3.38) to obtain
V- u||i2(szp) =bp(u,V-u) =0,

which implies that

||upr = ”uHH(div,Qp) = Hu”(n(ﬂp))d'

To see the regularity inequality, we pick v =u, ¢ = p, and v, = ,, and add (3.37)-(3.38) together
to obtain

ap (u7 u) - lp (u) + bp,B (qpn;h ﬂp)

= (fiaui)Qp - <11 : np7pB>Fp,D - <11 : npap]>F1 - <QPnp7Bp>FpYF

2 2 2 2 2 2
<0 (I + allyy )+ Iorly )+l ) € (Il + 1) (a2

(Ts.0) HZ2(Iy)
From the assumptions that the viscosity ,(|u|) is bounded from below and that R is strictly positive
definite, we have

ap (1, 0) = / ol [u) Rygujvide > C ull o o (3.43)

P

Now the theorem follows from (3.41)-(3.43). m

Remark: (See [11]) For sufficiently smooth data, f, pp, pr and solution u, p the unique solution of
(3.37)-(3.38) satisfies
p = —Bpronlye k=1,2,...,K,. (3.44)

Thus the variational form (3.37)-(3.38) corresponds to the boundary value problem (2.11)-(2.15)
with the additional constraint (3.44).

15



3.4 The reduced Darcy problem on the interface

Let f € X7, pp € H%(FP’D), and g, € R%» be fixed given data as before. For each p; € H%(FI) C

Hié(F]), we have a unique solution (u*(pr), p*(pr), B;(pr)) € X, x L*(p) x RE» that satisfies
(3.37)-(3.38).

Theorem 6. There exists a constant C' > Osuch that
") = (), < CIA =l - (3.45)
If meas(I'y, p) > 0, we further have

1 . .
G IA =l ) < 0 O) = 0 (Wllx, < C 1A= ul (3.46)

H3 ()
Proof. To show the first inequality in (3.46), we consider

— ap (W' (), v) 4 ap (u* (1), v) + by (v, p"(A) = p* (1) + b5 (v, B3 () — B3 (1))
= (v -n,, (A=),

For v e Z, C X,

Cllu* () —u*(Wlx, IVlx, = Clla*(A) = (W)l 20,2 VI 220,
> —ap (u*()‘)v V) + ap (u* (N)a V)
= <V *p, (>‘ - M)>FI'

Thus, (with the assumption that meas(I'y, p) > 0) employing a result analogous to Lemma 2 for X,
and Z,, we have

(&, A= ),

A — = su
| “HH%m) P

1 1
qEHﬁi(F]) H’?(FI)

< C sup
vex, [[v-nl _i

< C sup
vez, |[v-nl _i

< Ol () —u*(w)x, -

Similar to the proof for Theorem 2, (3.45) and the second inequality in (3.46) can be shown by
using the weak formulation (3.37)-(3.38) and the strict monotonicity of a,(-,-). One difference here
is that we need to use the fact that the Darcy velocity is divergence free.

If p; is an unknown but the normal component of Darcy velocity q; € H %(F 1) is given instead, we
can solve for the pressure on I'; by seeking A € H 2 (I'r) such that

A, (A p) = —/F qrpds, V€ H%(FI), (3.47)
I
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with the form A, (-,-) defined by

Ay O ) = —(as(\) - 1o .
We now prove a few properties of A4, (-, ).

Theorem 7. A, (A, 1) is a nonlinear functional of X and a linear functional of p. Ap(-,-) is contin-

wous on H? (T'r) x H? (T'1). Moreover, A,(-,-) is monotone on H2 (T'r) x H> (). Ifmeas(I', p) > 0,

Ap(+,-) s strictly monotone on H%(F[) X H%(F[).

Remark. Unlike the space on It for Stokes flow, A and p here need to be defined in H%(FI), not
1

H™ 2 (F[) .

Proof. The continuity follows from Theorem 6. To see the strict monotonicity under the assumption
of meas(I', p) > 0, we note

Ap (M A =) = Ap (1, A = ) = ap (W (A), u*(A) — u* () — ap (0" (p), 0™ (A) — u*(p))
> Clu*(A) —u’
= Clflu*(}) —u”

> _
>Clh=nly . .
where we have used Theorem 6 for the last inequality above. The rest of this theorem follows
similarly as that in Theorem 3. ®

({200,
(1)

K ||H div,Qp)

Theorem 8. If meas(I', p) > 0, then there is a unique solution A € H%(FI) to the reduced problem
(8.47) for any given qr € Hié(F[).

Proof. This theorem follows directly from the continuity and the strict monotonicity of the form
Ap ('7 ) u

3.5 Coupled system

For convenience, in the following analysis we assume that meas(I', p) > 0, which as we will see, gives
the uniqueness of the pressure solution. We will remark later on the modification of the analysis for
the case of meas(I's n) = meas(I', p) = 0.

We couple the fluid flow through the two regions using continuity of the flux on I';. We define
AN p) =Ar (A p) + Ay (A )
From the continuity of the normal velocity
[u- n”rl = (uf-ny+u,- np)|p, =0,
we know that the coupled system can be formulated as: Determine A € H %(F 1) such that

A(M\p)=0, VYueH:(T)). (3.48)
We now list a few properties of A (-, -).
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Theorem 9. A (\ p) is a nonlinear functional of A\ and a linear functional of p. Under the as-
sumption that meas(I', p) > 0, A(-,-) is continuous and strictly monotone on H%(FI) X H%(FI).

Proof. 1t is clear that A (A, p) is linear in p. Continuity follows from the continuity of its parts:
A\ p)—A (X,u)‘ < ‘Af (A, ) — Af (Xnu)‘ + ‘A;D (A ) — AP <:\\7:U’)‘

<cr=3, clr=3
< i e+ .

<=M s, Wl

2(I'r)

and

(A ) = AN < [Af (A p) = Ap ()] + 1 Ap (A 1) = Ap (A, 1)

< C Mg 0= il g

The strict monotonicity also follows from the individual monot0n1c1t1es That is, Af (A, A —p) —
Af (A —p) > 0and Ay (A A —p)—Ap (1, A —p) > C||X— MH together imply A (A, A — p) —

A A =p) = CIA=plly o

2(Tp)

Theorem 10. We assume that meas(I', p) > 0. For any given qr € H%(FI), there is a unique
solution \ € H%(I‘I) to the reduced problem (3.48).

Proof. This theorem follows directly from the continuity and the strict monotonicity of the form
A (‘7 ) u

Theorem 11. We assume that meas(I', p) > 0. Let pr = X be the solution to the reduced interface

problem (3.48), and u;‘c(pj), p}‘c(pj), ﬁ}i(p]), w,(pr), py(p1), and B;(pr) be the subdomain solutions
to (3.18)-(3.19), and (3.37)-(53.38). We have the following regularity result:

1l 3.y + 0D, + (050 |, + 1P* (POl z20) + |87 (p1)] + [ (pr)]

<C (Hff!

Proof. From the weak formulation (3.48), we have

A(pr,p1) = 0.
Using this together with the continuity and strict monotonicity of the form A (-,-), we conclude
< C(A(pr,pr —0) — A(0,pr —0))
=—CA(0,p1)
= —C(uy(0) -nyg,prir, — C{u,(0) - 0y, pr)r,
<elprllyy g,y + Cup©) nyllfy )+ € flup(0

. o 1 .
X% + H p”xp + HTBH(H*%(Ff,N))d + HpBHH%(Fp,D) + ‘qf| + ‘qp|>

2 . A2
o123 ) = lor =012,

2
) s

+C Hup pr :

< ellprlyy o) +C 17Oy,
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Consequently, we have
il 0., < C 5Oy, +C O],

Theorems 1 and 5 imply

7 O)lx, < © (\ffux; el o, oy \qu>

and
s, <€ (I8l + ol )+ 1)
This Theorem follows by another application of Theorems 1 and 5. B

Remark. Ifmeas(I's y) = meas(I'y p) = 0, the pressure solutions in the two stand-alone subdomain
problems are still unique. But the pressure solution to the interface problem (3.48) is no longer
unique; instead it is unique up to an additive constant. As a result, the two subdomain pressure
solutions to the coupled system are unique up to an additive constant. In particular, we see that
A¢(-,-) and Ay(-,-), and consequently A(-,-), lose their strict monotonicity, which leads to the non-
uniqueness of solutions. To see that the pressure solution actually exists uniquely up to an additive
constant under meas(I'y y) = meas(I', p) = 0, we replace the original spaces for pg, pp, and pr
by L*(Qf)/R, L*()/R, and H%(FI)/R, respectively. With the new spaces, one can show that
A¢(-,-) and Ay(-,-), and consequently A(-,-), recover their strict monotonicity under meas(I's ) =
meas(I'y, p) = 0. All other theorems above then follow under the modified pressure spaces.

4 Finite Element Approximations

We discretize the coupled nonlinear Stokes-Darcy system (3.48), (3.18)-(3.19), and (3.37)-(3.38)
with finite element approximations. We use conforming approximating spaces:

X C Xy, Mpy CLA(Qy), Xpn CXpo M, C L2(Q,), Ly C H2(T')).

Here Xy and My, denote velocity and pressure spaces typically used for Stokes fluid flow approx-
imations, for example, the Taylor-Hood spaces. X,, ;, and M, ;, denote typical velocity and pressure
spaces in mixed finite element methods for Darcy flow, such as the Raviart-Thomas spaces. In this
section, we again assume that meas(I', p) > 0 for the uniqueness of the pressure solution. We first
list a few assumptions on our finite element spaces.

Assumption 1. We assume that there exists an inf-sup condition for the Stokes flow approximation:

inf sup b (Vi an) + by. (Vh’ﬁf) >C >0. (4.49)

51 eR*S e Xy |villx, (llanlzz(,) +157])

Remark. The above condition holds for the Taylor-Hood spaces on a quasi-uniform mesh of triangles
or tetrahedra (see [2, 11]).
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Assumption 2. We assume that there exists an inf-sup condition for the Darcy flow approximation:

inf sup b (Vh: Gn) + by, (Vs ) >C > 0. (4.50)

8RS My X [vallx, (llanl 2, +15])

Remark. The above assumption holds for the Raviart-Thomas spaces on a quasi-uniform mesh of
triangles or tetrahedra (see [2, 11]).

Assumption 3. (Compatibility condition of the mixed spaces for Darcy flow) We assume
that there exists a “swapped” inf-sup condition for the Darcy flow approximation:

nf swp bp (Vi, qn)
Vi€Xph g,EM, IV Vh”L2(Qp) HQhHLQ(Qp)

>C > 0. (4.51)

Remark. The above assumption holds whenever V - X, C M, , which is satisfied by commonly
used mized finite element spaces (for example, the Raviart-Thomas spaces).

Analogous to the analysis for the continuous problems, we define two null spaces:

Zypp = {vi € Xpp: by (Vi,an) +bps (Vivs) =0, Vyp € RS Vg, € My},
Z,) = {vh € Xpn: by (Vi,qn) +bp.B (Vi) =0, Vyp € RE» Vg, € Mnh} ,

and introduce two affine sets:
Zﬁh = {vy € Xypp: by (Vioaqn) +bp5 (Vi,vr) = bs. (gpny,vy) , Yoy € RS Vg, € My, ),
Z;‘,h = {Vh € Xpnt by (Viyqn) + bp,B (Vi ) = br.B (@pp, ), Y € R, Van € M, Jl} .

Assumption 4. (Mortar compatibility condition for Stokes flow) We assume that there
exists an inf-sup condition between the mortar space and the Stokes flow approrimation spaces:

inf  sup {vi 17 An)r, >C. (4.52)

AnELp vaZf,h ”vhHXf HAh||H7%(FI) -

Assumption 5. (Mortar compatibility condition for Darcy flow) We assume that there
exists an inf-sup condition between the mortar space and the Darcy flow approximation spaces:

. A
inf  sup Vi B )Ty
An€Ln vy €Z,, HVhHXp H)\hHH%(FI)

> (. (4.53)

Remark. Roughly speaking, (4.52) specifies that the normal-velocity component restriction of Zyp,
on 'y should be at least as dense as the mortar space Ly. Similarly, (4.53) specifies that the normal-
velocity component restriction of Zyp, on I'r should be at least as dense as the mortar space Ly,. We
remark that it is sufficient but not necessary to require both mortar compatibility conditions (4.52)
and (4.53) for the ezistence and uniqueness of a solution to the coupled system; either one of the
two conditions is sufficient. We assume both compatibility conditions here for convenience.

Following from the above inf-sup assumptions and Theorem 18, we have the combined compatibility
conditions:
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Lemma 4. There exist a constant C > 0 such that

(A Ve -np)r, + b (Vi qn) +bpB (Vi, Bf)

inf . Sup >C >0, (4.54)
An€Lp,an€My 1, B ER™S Va€Xfp thHXf (H/\h”H*%(FI) + thHLQ(Qf) + ‘5f’>
‘1, A b b
nf qup VAo AR)Ey + by (Vhy a) + bp,5 (Vi Bp) SO0 (4.55)

M ELns €My, B RSP v X [|viy |, (HAhHH%(m +llanllr2q,) + ’5p’>

4.1 Stokes flow approximation

We first restritlzt out attenltion to the finite element discretization of Stokes flow, assuming that
prn € L, C H2(I'y) € H2(I'r) is given. Define

L () 1= (Fi v, + [

TB7Z'UZ'dS—/ DI RVIN;AS.

d
The weak formulation is: Given f € X’Ji, TN € (Hfé(FﬁN)) , qf € REF and prn € Ly, determine
(uhaphaﬂf,h) € Xypp X My ¥ REs such that

af (U, vi) = bp (Vi,pn) = br,B (Vi Bra) =lpn (Vi) s Yvi € Xpp, (4.56)
b (Wn, qn) +byps (an,vr) = by (amyp, vy, ),  V(an,vy) € Mpp x REY (4.57)
Theorem 12. There exists a unique solution (Wp,pp, Brn) € Xgp x Myp X REs satisfying (4.56)-
(4.57). In addition, there exists a constant C > 0 such that
= willx, + I — Bl 2, + 165 — Bl

<o imf -Gl + o=l ) + Clora - wil, (458)

upeXy phEMy 1, _%(FI) .
Proof. The existence and uniqueness of the solution follows from the continuity and strict mono-
tonicity of ay (-,-) on Zyp x Zyy, together with the discrete inf-sup condition (4.49).
Subtracting (3.18)-(3.19) from (4.56)-(4.57), respectively, we obtain the following error equations:
af (up,vi) =ag(u,vp) +bf (Vi pp — p) + b5 (Vi, Brh — By)
+lsn (vp) — Ly (Vh), Vv € X, (4.59)
b (up —w,qn) + b (W —w,yp) =0, V(gn,vp) € Mpp x RES. (4.60)

We note that the right-hand side of (4.59) contains the error propagated from the interface approx-
imation:
Lgn (V) = lf (Vi) = =((pr,n — 1), Vi - D)1, (4.61)

We pick uy, € Zﬁh C Xyfh, Dh € My, nyh € RXf, and note that
by (up — Up,pp —pn) + by B (uh — Uy, B — 5f,h> =0. (4.62)
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With v, =uy, — Uy, € Zs), C Xy, using (4.59), (4.61) and (4.62), we obtain

ag (up,up —Up) — ay (Up, wp, — Up) = ay (w,uy, — Uy) — ay (Up,up, — Uy) + by (W, — Uy, Py — p)
+bs B <uh — Uy, Bfn — 5f) — ((pr,n — p1), (U —Up) - M),

~ 112 ~ 112 ~ 12
< ellup —upllx, + Cllu—upllx, + Cllp = Pullz2(q))

~ 2
2
+C ‘Bf - ﬁﬁh’ +Cllprn —prll-y -

Because of the strict monotonicity, we have
ag (up,up = Up) — ag (Gp,up — Up) > Clluy — Gk, -

Since Up, pp, and Sy, can be arbitrarily chosen from their corresponding spaces, we have

inf |p—opn 4+ inf ‘B —B,h’
per’hH 2@ 5, r— By

u, —u <C| inf [u—u +
up —unllx, < (ﬁhez‘f‘{h|’ nllx, +

+Cllprn = pill -3 1

e ( inf ju G, + oy —ﬁhHLsz)> +Cllpen = pill oy g, - (463)

u e Fh h f,h

We proceed to lift uy from Z’;‘h to Xy, in the above estimate. From the inf-sup condition (4.49),
we know that there exists an operator II;, : X — X/, such that

by (u—Ipu, qp) + byp (w—TIu,v7) =0, V(qn,vs) € My x RFY
and
My, < Cullx, -
For any given u;, € Xy, we now define uj, := u,, — Il (1, — u). Using (4.60) and that fact that u
satisfies (3.19), we easily verify that uj, € Zﬁh. We then have
=l < lha -l + 1T — anllx,
— = dinllx, + I G — W),
< (14 0)u— Ty, -
which implies
inf Jlu—1u <(1+C) inf |Ju—-nu . 4.64
S Tl 140) g -l (4.64)

The triangle inequality together with (4.63) and (4.64) yield

_ <o inf Ju-q inf [lp—p Cliprn = 4.65
||u uh”Xf < <ah1€%(f7h ”u uhHXf —{—ﬁhEMf’h ||p ph|L2(Qf)> + ”pLh pIHH—%(F ( )

0’

22



To get the error estimate for pj, and Sy, we use the inf-sup condition (4.49) and the error equation
(459) Picking py, € My p, and 5f,h € IRKf7 we have

by (Vh,pn — DPn) + by, (Vh,ﬁf,h - Bf,h)

Ipn = Phll 2y + ’/Bf,h - Bf,h’ <C sup

vh€Xyh HVhHXf
<C sup by (Vh.pn —p) +brB (Vi Brn — By)
vheXsn Ivhllx,
by (Vh,p —Dn) + bs.B (Vh, By — 3f,h>
tO, il
0 sp Y (up, vi) —ay (w,vp) + {(pr,p — pr), va - mr,
vihEX ) h HVhHXf
by (Vh,0 —DPn) + by,B (Vh, Bf — Bf,h)
tOE, Vil

< Cllu—willx, +Cllprs—pil +Cllp = Fulzqy) + C |87 — Bra

)

H™2(Iy)

implying

1P = Prll 2o,y + 18y = Bral < Clla—upflx, + Cﬁhé% 1P = Phll 2o

f.h

+C  inf ‘ -8B ‘—FC - _1
Bf,I:GRKf Bt = Bt Pz pI”H 3(ry)
=C|u- uh||xf + Cﬁhérjl\gf,h Ilp — thLz(Qf) +C|prn _pIHH*%(rI) .
(4.66)

The estimate (4.58) follows from (4.65) and (4.66). m

4.2 Darcy flow approximation

We now consider the finite element discretization for the Darcy flow, assuming that p;j; € Ly C
H%(I‘]) is given. We define

lph (V) = (fi;vi)e, — (Vh 1p,0B)T, p — (Vi - Dp, P1A)T; -

The weak formulation is: Given f € X7, pp € H%(FP’D), gy € REr and prp € Ly, determine
(W, Ph, Bpn) € Xpn X My, x RE? such that

ap (U, V) — by (Vi on) — bp.B (Vi, Bp,n) = lpn (Vi) 5 Vv € Xpp,  (4.67)
by (Wp, qn) + bp. B (W, 7p) = by B (gp1p, V) , ¥ (qh,vp) € My x RP. (4.68)
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Theorem 13. There ezists a unique solution (Up, ph, Bpn) € Xpn X My x RE? satisfying (4.67)-
(4.68). In addition, there exists a constant C' > 0 such that

lu—wllx, + 1P = Pl 2, + 18y = Bpnl

<o imf =Tl + it 9= Pillie,) + Clows - il 169)

1 - (
upeXyn PhEMy 1, H2(T))

Proof. The existence and uniqueness of the solution follows from the continuity and strict mono-
tonicity of a, (-,-) on Zy}, X Z, , together with the discrete inf-sup condition (4.50).
Subtracting (3.37)-(3.38) from (4.67)-(4.68), respectively, we obtain the error equations:
ap (up, vi) — ap (W, Vi) = by (Vi Pr — P) — bp,B (Vhs Bp,n — Bp)
= _<Vh *Np, (pl,h - p[))Fm Vv, € Xp,h7 (470)

by (up, —u,qp) + by B (up, —u,vy,) =0, Y (qn,Yp) € My p x RE?. (4.71)

We now take 1y, € Zﬁ,h C Xph, Ph € Mpp, Bp,h € REr and set vy, = up, — Uy, € Zp;, C X, in
(4.70) to obtain

ap (up,up — Uy) — ap (Up, up — Uy) = ap (w,u, — Up) — ap (A, up — Up) + by (up, — Uy, Dy — p)
+bp.B (uh — T, By — 5p> — ((up —Up) - mp, (Pr,n — p1))1,
< cllun = Gl + C = 8lPpaq o + C o~ Pl
+C By Bya| + Cllorn—pily
Due to the strict monotonicity of ay, (-, -), we have
ap (Up, up — Up) — ap (Up, up — Up) = Clluy, — ﬁhll?Lz(Qp))d :

Since the Uy, pp, and 3,5 can be arbitrarily chosen from their corresponding spaces, we have

I =l gz, e = inf, (Il = Bl 18— 0 g, )
P,

<C inf Jlu—1u + inf — D + inf Sy} ‘
<ﬁhezﬁh H h”(L?(Qp))‘i BueM, Hp thL2(Qp) B, »eRKD 512 Bpﬁ )
+C - 1 +¢€¢ inf ||luy,—1u
Iz = pill ;3 1 . [un —unllx,
<C inf |[lu—1u + inf — D
< ( uil, +inf phump))
FClpra = pilly g, + el =l (4.72)

Now we use the swapped inf-sup condition (4.51) and 4.68 to obtain

b, (up,
IV - upll 2, < € sup by (Uh, an)

qnEMp 1 HQhHLQ(Qp)
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which then implies
I+ (n— w200, = 0. (473)
As a consequence of (4.72) and (4.73), we have

lu—wlx, <C ( inf ju -Gyl + it - ﬁhm(gp)) +Clipra — il (4.74)

1 .
upc .k h P, H?2 (FI)

Using the inf-sup condition (4.50) and the fact that u satisfies (3.38), we now lift uj, from Zﬁh to
X,.» by applying an argument similar to the one we have used before for lifting the velocity in the
Stokes flow region to obtain:

inf |lu—1 <C inf |lu—nu . 4.75
Rl <O gl (4.7

Now (4.74) and (4.75) yield

huwnlx, <€ (im0 la=tul, 4 0=l +Cloen—pilly - (476)

hEXp,h PhEMp p 1)

To get the error estimate for py and 3,1, we use the inf-sup condition (4.50) and the error equation
(4.70) by picking pp, € My, and 3,5 € R&» similar to what we have done for Stokes flow:

by (Vh,ph — Dh) + bp B (Vm Bp.h — B;:,h)

IPn = Phll L2 (o, + ‘ﬂp,h - /Bp,h‘ <C sup

vhE€Xp HVhHXp
<C sw by (Vi, o — D) + bp,B (Vi, Bpn — Bp)
o VhEXp,h ||VhHXp
c by (Vi P — Dr) + bp,B (Vh, By — ﬁp,h)
+ sup
VA€Xpn Ivalx,
O osp & (un, va) — ap (0, vi) + (vi - 1y, (pr,p — p1))r,
vh€Xp th”Xp
c by (Vi,p — Pn) +bp.B (Vh, Bp — ﬁp,h)
+ sup
VhEXpy;L ”VhHXp

)

< Cllu—wnlix, + Cllprn —pill 3 )+ Cllp = Prllp2o,) + € ‘510 — Bph
implying

— — <Clu- C _inf — D
1P = pllr2,) + 18y = Bpal < Cllu—wx, + ﬁhg]hp’hﬂp Phll 2o,
+C _ inf
Bp,hGRKP

By = Bpa| + Cllra =il 3

=Cllu—uplx, + Cﬁhgzl\gp,h 1P = Dhll 2,y + C llprn —pIHH%(FI) :
(4.77)
The estimate (4.69) follows from (4.76) and (4.77). m
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4.3 Discretization on the interface

For each prp, € Lp C Hé(I‘I) C H_%(I‘I), we have a unique finite element solution
<u}7h(p1,h),p}7h(p1,h),B}7h(p17h)) € Xypn X My x RE7 satisfying (4.56)-(4.57), and a unique fi-

nite element solution (u;7h(p1,h)7p;,h(pl,h), [3;7h(p1,h)) € Xpn X My x RE» satisfying (4.67)-(4.68).
We now define

Afn (Any pn) == —(pn, 0y, (An) - 0p)r),
Aph (A, pin) = —(uy, 5 (An) - Dy, pn)r ;s
Ap (Ans o) == Arn (A, pin) + Ap h (Ans pin) -

The disclretized interface problem for the coupled system can be formulated as: Determine A\, €
Ly, ¢ H2(T'y) such that
Ap (Ans ptn) = 0, Viw € Ly, (4.78)

Theorem 14. There exists a constant C such that

1 . .
ol [An — MhllH_%(m < | n(An) — uf,h(ﬂh)HXf <Cl - “h”H—%(rI)’ (4.79)

1 " *
o = mnllg o < 0 Ow) = w5 (), < C A = mall - (4.80)

Proof. (4.79) and (4.80) can be shown similarly as we did for Theorems 2 and 6, except that we
now need to replace the continuous inf-sup conditions by their discrete counterparts, i.e. the mortar
compatibility conditions (4.52) and (4.53) for the lower bounds. We point out that the proof for
the upper bound part of (4.80) uses the property that uy, is divergence free in the Darcy region. m

We now prove a few properties of Ay, (-, ).

Theorem 15. Ap (A, un) is a nonlinear functional of A\p, and a linear functional of up. Ap (-, -) is
continuous and strictly monotone on Ly, X Ly,

Proof. Tt is clear that Ay (A, u) is linear in p. To see the continuity, we apply Theorem 14:

An (Ans ) — Ap </)‘\hnuh)‘ < ‘Af,h (Ans bn) — Agpp (Xhaﬂh)‘ + ‘Ap,h (Ans ) = App (Xh, Mh)‘
< Oz n) = i) | lnly -y
0 w0 = B[ Ml

<cfu-|

ety gy +C (YR AhHH% T

=¢ HA" - XhHH%m) linllgrd e,y
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and

|An (Any pin) — An Ans 0) | < [Agn (Ans tn) — Apn (A, Bin) |+ [Apn (Ans in) — Apn (An, )|

<Ol 2 )Huh—ﬁhﬂ

1 .
H2 (I H2(I'r)

Like its continuous counterpart in Theorem 3, we have the following strict monotonicity
A Ay A — i) = Agpn (s Aw — i) = ag (W, (An), 0, (An) — uby (un))
—ag (ufp(pn), whp(An) = wfp(1n))
2

> C [l (M) = uf (n)
2
> — .
> Clw -l

Similarly, we have

Ap b (A Ay — 1) — Ap b (ptn, An — pin) > C' || Ap — Mh”?{%(m) .

The strict monotonicity of Ay, (-, -) then follows directly from these two inequalities. B

Theorem 16. For any given q; € H3 (I'y), there is a unique solution A\, € Ly, to the reduced problem

(4.78).
Proof. This theorem directly follow from the continuity and the strict monotonicity of the form
A (). m

Theorem 17. Let prp = A, be the solution to the discretized interface problem (4.78). Let
(WfhsDfhs Brn) and (Up b, Dphy Bpn) be the subdomain solutions to (4.56)-(4.57) and (4.67)-(4.68)
supplied with prp. Then, there exists a constant C' such that

L (HUf —usnllx, +llpr = prulliaqp + 167 = ﬁf,hl)

+ (Hup - up,thp + pr _pp,hHL2(Qp) + ’ﬁp - ﬁp,h|)
< (C inf — D, 1 +C inf Jlur—1 + inf — D
" Pra€ly le pl’hHH% Tr) <ﬁh€Xf,h ” / hHXf PhEMy p, pr thLZ(Qf))

0 (i =l i = Bl )-

up€EXyp, Pr&Mp.n

Proof. Let prp € Lp. From the weak formulation (3.48) and its finite dimensional counterpart
(4.78), we have
A(pr,pr.n —Drp) =0,
An (P1hsprp —Prn) = 0.
These two orthogonality conditions together with the strict monotonicity of A(-,-) yield

1 - . ~ ~
o P — p[,h||2%(F < A(prh,pih = Prn) — A(PLhs Prh — Pin)

1)
= A(prn,pr,n — P1,p) — An (P10, PLL — DI,h)
+ A(pr,pr.n — brp) — A (P10 PIR — PLR) - (4.81)

27



The first two terms on the right-hand side of (4.81) contain the error propagated from the two
subdomains and can be bounded using Theorems 12 and 13:

A(prp,vr.h — Pr.h) — An (P11 PIR — Prh)
= —((pr,n — brp), (Wp(prn) — wpp(prn) - ng)r, — ((Up(prp) — w1 (Prk)) - 0y, (Pr,e — Prp))r,

< Clluf(prn) — u?,h(pLh)fo Ipr.n _@’hHH—%(FI) + C || wi(prp) — u;h(pl,h)pr Ipr.n _ﬁf,hHH%(n)
<c( inf ~ 1 inf —p —p
<o it u =Tl + o n o = Pallsay) ) I eall g
co (i =Tl + = Palliagey ) oo = ool
<elprn —brallly o +C(_ inf luy=8nlx, +_inf (lpr = pul7
- ’ TUH2(T) Up€Xs p X1 pueMpn L2@p
+C inf |lu, — Gpl|% + inf —pull? .
(o o=l + it = il
The last two terms in (4.81) contain the error from the interface discretization:
A(pr,p1.n —DPrn) — AD1n,P1.h — DI p)
= —((pr.n — Pr,n); (U}(pl) - uj‘(pl,h)) “ng)r; — <(U;(p1) - u;(pf,h)) Ny, (p1,n — D1,p))T;
< Clwi(pr) =i @rn)x, lprn - Prally-3 0, +€ [ (pr) = w,(Brn) ||k, P2 — Pra e

< Cllpr = prall -y oy IPrn = Prall -3 )+ C oz = Prall g ) IP2e = Prall g

< — prall? — prall? :
< Cllpr = Prallyy )+ ellprn = Prallyy o)
This theorem follows by first noting the fact that pyj can be chosen arbitrarily from Lj and then
applying a triangle inequality and Theorems 12 and 13. m

5 Numerical Examples

We consider a coupled Stokes-Darcy system on the domain [0,2] x [0, 1], representing a two-
dimensional version of an industrial filtering application where a non-Newtonian fluid passes through
a filter to remove unwanted particulates. Here the flow of the fluid through the channel [0, 1] x [0, 1]
is coupled with its flow in the porous medium [1, 2] x [0, 1]. We impose a defective boundary condi-
tion on the left boundary by specifying an inflow flux of one, and we impose a defective boundary
condition on the right boundary of an outflow flux of one. Along the top and bottom boundaries,
we impose a no-slip boundary condition for the Stokes flow and a no-flow boundary condition for
the Darcy flow. We assume a Cross model for the fluid viscosity v in the Stokes region and another
Cross model for the effective viscosity v, in the Darcy region:

Vf70_yf7
v (D)) = vpoo & -5 o
Vpo — Vp,
() = oo TP
p
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where |-| is the Euclidean norm in R? or the Frobenius norm in R%*?. In our numerical examples
below, we set Ky = K, = 1, Vfoo = Vpoo = 1, vy = 1o = 10, ry = 1, = 1. We note that a
fluid with r¢, r, € [1,2) possesses a shear thinning property, and ry = 7, = 2 corresponds to the
special case of a Newtonian fluid. On the interface {1} x [0, 1] of the two subdomains, we impose
the Beavers-Joseph-Saffman slip condition with ag = 1, in addition to the conservation of mass and
normal forces across this interface. The permeability of the porous medium is set to be the identity
matrix in R?*2,

For the numerical discretization, we use a 20 x 10 uniform rectangular mesh. The Taylor-Hood space
of Q2-Q)1 is used for the Stokes flow; that is, velocity is approximated by a continuous piecewise
biquadratic polynomial and pressure is approximated by a continuous piecewise bilinear polynomial.
The Darcy flow is approximated by the RT; space (i.e. velocity is approximated by a piecewise
biquadratic polynomial with certain normal-component continuities and pressure is approximated by
a piecewise bilinear polynomial). The mortar finite element space on the interface is the continuous
linear polynomial space. Since the pressure is unique only up to an additive constant in this problem,
we impose one additional constraint to enforce a zero average of the pressure on the outflow boundary
{2} x [0, 1]. (We have also ran numerical simulations on a mesh containing 400 triangles, using P»-P;
Taylor-Hood for Stokes, RT; for Darcy, and continuous P; for the mortar space on I';. The results
with triangular meshes (not shown) are almost identical to the results presented here.)

The approximating system of coupled equations has two features to note. Firstly, the equations are
non-linear and secondly, the coupled system can be recast as an interface problem. Depending upon
the order in which these features are implemented gives rise to two approximating algorithms.

Algorithm 1
e In the outer loop solve the (non-linear) interface problem.
e In the inner loop solve a (decoupled) non-linear problem on each subdomain.

Algorithm 2
e In the outer loop solve the (coupled) non-linear problem.
e In the inner loop solve the linear interface problem.

We plan to investigate the performance of the two algorithms in a forthcoming paper. For the
computations presented herein we use a modification of Algorithm 2. As the total degrees of
freedom is small, for the inner loop we simply use a sparse direct solver.

Figure 5.1 displays the simulation results obtained using the defective boundary condition treatment
described in this paper. (See the Remark following Theorem 1.) Physically this boundary condition
(BCI) corresponds to an inflow that is connected to a large reservior of water. Note that in Figure
5.1 that the fluid velocity near the inflow corners is not parallel to the top and bottom boundaries.

We have also considered the physical circumstance where the inflow boundary is attached to another
same-sized channel supplying the fluid. For this case (BCII) we supplement the specified flow rate
constraint with the condition that, at the inflow, the tangential component of the velocity is zero.
Equation (3.16) is replaced by

d—1
vamids+ Z/ Xf7m’l)itm7id8.
m=1 r

fF

/ (oijnj — pnj)vids =
Tyr Ty r
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Equation (3.17) remains unchanged, and we add the constraint:

-1
Z Vg muitm,ids = 0.

d
m=1"Lr.F

Here the Lagrange multiplier 85 € RXf = R represents the normal component of the traction vector
d—1
(a constant function on I'y p = {0} x [0,1]). The function x; € (H_%(Fﬁp)) = H_%(Fﬁp)

(for d = 2) is an arbitrary function so that the tangential component of the traction vector is

unconstrained; but the function ¢, € (H _%(Ff,F)) = H _%<Ff7F) serves to weakly enforce

a 7ero tangential component of the velocity. In the finite element approximation, we discretize
H™2(I't r) by a continuous piecewise quadratic polynomial function.

Results using BCII are presented in Figure 5.2. Note that at the inflow the veolicty is parallel to
the top and bottom boundaries.

Figure 5.1: Polymeric fluid flowing from a channel into a porous medium: simulation results using
the defective boundary condition treatment I. Top left: pressure contour together with velocity
arrows; Top right: velocity magnitude contour with streamlines; Bottom left: velocity magnitude
contour with velocity arrows; Bottom right: viscosity contour.

6 Conclusions

We have analyzed a multiphysics coupling strategy for nonlinear Stokes and Darcy flows which
allows for separate resolution of the flows in each domain. The strategy is easily parallelized and
enables use of existing Stokes and Darcy flow codes.
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Figure 5.2: Polymeric fluid flowing from a channel into a porous medium: simulation results using
the defective boundary condition treatment II. Top left: pressure contour together with velocity
arrows; Top right: velocity magnitude contour with streamlines; Bottom left: velocity magnitude
contour with velocity arrows; Bottom right: viscosity contour.

The domains are coupled through conservation of mass and balance of normal forces along the
interface, along with a condition on the tangential component of stress in the Stokes region. This
has been the standard practice for coupling of Newtonian fluids, and we have extended these results
to handle the non-Newtonian case where viscosities are velocity dependent. We have shown existence
and uniqueness of the variational solution and have presented numerical results to demonstrate the
method.

We can see the effects of the no-slip and zero transmissibility boundary conditions in the Stokes and
Darcy regions, respectively. The viscosity is relatively large around the central axis of the Stokes
region due to the small strain rate and decreases as the strain rate increases towards the boundary.
In comparison, the viscosity in the Darcy region has much less variation due to the (almost) uniform
velocity profile.

We have also presented two realizations of the defective boundary conditions that match the physical
scenarios we wish to model. The first treatment (BCI) corresponds to an inflow boundary that is
connected to a large reservoir of fluid, while the second treatment (BCII) corresponds to a case
where the inflow boundary is attached to another same-sized channel supplying the fluid. The results
show the differences in the pressure, velocity, and viscosity profiles for each of these situations. As
expected, the velocity streamlines and viscosity contours show the viscosity effects at the inflow for

BCI. The pressure and velocity of the fluid are clearly affected by the change in momentum between
BCI and BCIL.

These results, combined with earlier analyses of coupled Stokes-Darcy problems, will allow for
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simulation of variety of filtration processes. Future work will incorporate coupled transport and
reaction equations across the flow domain to more completely capture problems of interest.

Appendix

A On Inf-Sup Conditions

Theorem 18. Let V,Q1,Q2 be Hilbert spaces; b1(-,-) : V x Q1 — R, ba(+,+) : Vx Q2 — R be
continuous bilinear functionals; and Z1 = {v € V |bi(v,q) =0, Vg € Q1} be a null space. Let C,
k =1,2,12, be positive constants. Then the inf-sup conditions (A.1) and (A.2) are equivalent to the
combined inf-sup condition (A.3).

sup  bi(v,q1) > Cil|lqillg., Y1 € @1, (A.1)
veV, ||v||ly=1
sup ba(v,q2) > Colla2llQ., Va2 € Qo, (A.2)
ve€Zn, ||v|lv=1
sup  (b1(v,q1) +b2(v,q2)) = Cr2 (lanll@, + ll2ll@.) s (g1, q2) € Q1 x Q2. (A.3)

veV, |lvfly=1

Remark. This theorem can be extended to the case of multiple bilinear functionals by(-,-) : V X
Qr — R, £k=1,2,3,---K.

Proof. The implication of (A.3) from (A.1) and (A.2) was been shown in [11]. It is trivial to show
that (A.3) implies (A.1). We now assume that (A.3) and (A.1) hold, and we show (A.2) below.

Without loss of generality, we assume that Z; is a proper subspace of V; that is, le is a nontrivial
space that contains nonzero functions. Given a function v € V, we let Pz v be the orthogonal
projection of v onto Z; and we define Ppiv:i=v—Pzvec Zi. We remark that Py, is well defined
as Zj is a closed subspace of the Hilbert space V. In addition, we know that there exists a constant
Cz, =1 such that

[1Pz,v]lv < Czlvllv.

Given a function g € 2, we look for a solution ¢; € (01 such that
bi(vi, @) = —ba(vi,q2), Vo1 € Z7-. (A4)

We denote the solution ¢; by Ilg,g2. We note that b(:,-) is a continuous bilinear form; the right-
hand side in (A.4) is a continuous linear functional for a fixed ¢a; b1 (-, -) satisfies the inf-sup condition
(A.1) and SUpPg, e, b1 (v1,q1) > 0 for any nonzero element v; € Zf. Consequently, the generalized
Lax-Milgram theorem is applicable, which implies that the solution to (A.4) indeed exists and is
unique.
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The properties of Pz, and Ilg,, together with (A.3), yield the desired result:

sup ba(v1,q2) > sup b2(Pz,v, q2)
1)1€Z1,H’U1||v=1 vEV, ||le’vHV:1
[vllv

=———  sup bo(Pzv,q2)
1Pz, ][V vev, |jo]ly=1 1

> sup  ba(Pzv, q2)
Cz1 vev, o]y =1

= C sup (bl(leva HQ1CI2> + bQ(PZ1v7 QQ))
Z1 e, lofly=1

= c sup (bl(PZﬁ/‘i‘PZlLUaHQND)+b2(PZ1'U+leL'U,q2)>
Z1 veV, |lv[lv=1

= sup  (b1(v,I1g,q2) + b2(v, g2))
Z1 ’Ue‘/,H’UHVZI

Ci2
Z & (Mg, g2/l + lla2llQ.)
Z1
Ci2
> Q2Q-
2 ol

Remark. The equivalence of the combined inf-sup condition to the individual inf-sup conditions
shown in Theorem 18 is similar to recent work of Gatica and Sayas [15].
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