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Abstract

In this article we investigate the numerical approximation of the Darcy equations in an ax-
isymmetric domain, subject to axisymmetric data. Rewriting the problem in cylindrical coordi-
nates reduces the 3-D problem to a problem in 2-D. This reduction to 2-D requires the numerical
analysis to be studied in suitably weighted Hilbert spaces. In this setting the Raviart-Thomas
(RT) and Brezzi-Douglas-Marini (BDM) approximation pairs are shown to be LBB stable, and
corresponding a priori error estimates derived. Presented numerical experiments confirm the
predicted rates of convergence for the RT and BDM approximations.
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1 Introduction

In this article we discuss the numerical approximation of Darcy flow in an axisymmetric domain with
axisymmetric data. Our interest in this problem arose from considering the approximation of coupled
Stokes-Darcy flow in an axisymmetric domain. Many geometries in nature and from manufacturing
are either axisymmetric by evolution or by design. Assuming that the quantities of interest are
also axisymmetric, recasting the problem in cylindrical coordinates reduces the problem from a 3-D
computational problem to a 2-D computational problem. This reduction significantly reduces the
computational effort need to approximate the solution. In addition, axisymmetric computational
models are useful in validating more complex 3-D computational models. The starting point for
the numerical analysis of coupled Stokes-Darcy flow in an axisymmetric domain is to individually
consider Stokes flow and Darcy flow in the axisymmetric setting.

The numerical analysis of the axisymmetric Stokes flow problem has been studied by several re-
searchers. In [22] Ruas showed that for axisymmetric Stokes flow the LBB condition for the stability
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of the approximations was satisfied for: (i) the partition of the domain into quadrilaterals and the
Q2 − P1 velocity-pressure element pair, and (ii) the partition of the domain into triangles (subject
to all the triangle having either an edge along, or an edge parallel to, the symmetry axis) and the
mini-element velocity-pressure element pair. Belhachmi et al. in [3] showed that the LBB condition
was satisfied for the Taylor-Hood P1isoP2− P1 velocity-pressure element pair. A corollary of the
LBB condition being satisfied by P1isoP2−P1 elements is that it is also satisfied by the commonly
used (for flows in Cartesian coordinates) Taylor-Hood P2−P1 velocity-pressure element pair. One
common approach to establishing the stability of the velocity-pressure approximation spaces for
Stokes flow is to use the Stenberg criteria [23, 25]. This involves showing that the dimension of the
null space of a local matrix, generated from a macroelement, is one. In [13] we showed that the
Stenberg criteria extended to the axisymmetric setting and gave an easy proof of the stability of the
Taylor-Hood P2 − P1 velocity-pressure element pair, and for the Crouzeix-Raviart approximation
pair. Recently Lee and Li, in [17], showed the stability of the family of Taylor-Hood approximation
pairs for this problem. Unlike the previous work where the analysis was done in the axisymmetric
domain, Lee and Li performed their analysis in a 3-D setting. A more general problem, that of
approximating the Stokes equations in an axisymmetric domain, was studied by Belhachmi et al.
in [4].

We are not aware of any papers which present the analysis of the mixed formulation of axisymmetric
Darcy flow. (In [18], building upon the work in [5, 3] Li studied the approximation of the Poisson
problem in an axisymmteric domain, in particular, the use of appropriately graded meshed for
singular solutions. The Darcy flow equations also arise as a mixed method formulation to the
Poisson problem.) Commonly used elements for the velocity and pressure approximation of Darcy
equations in the Cartesian coordinate setting are the Raviart-Thomas pairs (RTk− discPk) and the
Brezzi-Douglas-Marini pairs (BDMk+1 − discPk) [9] . With these choices the velocity and pressure
approximation spaces, Xh and Qh, satisfy div(Xh) = Qh. With this property the L2 coercivity
of a(u,v) =

∫
Ω ν u · v dx on Zh = {v ∈ Xh :

∫
Ω q∇ · v = 0 , ∀q ∈ Qh} establishes the desired

Hdiv coercivity on Zh. The property div(Xh) = Qh also results in the very attractive property that
the computed approximation for the velocity is pointwise div-free, i.e. the approximation conserves
mass pointwise.

In the axisymmetric setting forRT andBDM elements the property divaxi(Xh) = Qh does not hold.
In fact the operator divaxi does not map a (vector) polynomial velocity space into a (scalar) poly-
nomial space.

In the Cartesian setting the RT elements have the property that for ρ the associated interpolation
operator and Π the L2 projection operator, one has that

‖divv − divρ(v)‖ = ‖(I − Π) divv‖ . (1.1)

This property is often illustrated pictorially and referred to as the commuting property diagram [9].
It is this property that permits the divergence of a function to be computed to the same order of
accuracy as the function itself when using a RT approximation. In the axisymmetric setting the
direct analog of (1.1) does not hold.

Additionally, because of the different operators and norms involved, the stability of RT and BDM
approximation (i.e. that RT and BDM elements satisfy the LBB condition) in the Cartesian setting
does not guarantee stability of the approximations in the axisymmetric setting.

The typical approach to obtaining the a priori error estimate is to map each element, T , in the par-
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tition Th, of the domain to a reference element, T̂ , apply approximation properties on the reference
element, and then map back to the element. In the axisymmetric setting, because of the weighted
norms, the approximation constants arising from applying the approximation properties on T̂ de-
pend on T . Two different approaches were used by Belhachmi et al. in [3], and Lee and Li in [17],
to establish the accuracy of the discrete approximation in the axisymmetric Stokes problem. In [3]
the authors established their results by generalizing results for the Clément approximation operator
to weighted norms. In [17] the error analysis was done by using interpolating results in the 3-D
setting. As we are using different approximation spaces for the velocity (discontinuous) and different
norms the results of [3, 17] are not directly application to the RT and BDM approximations of the
axisymmetric Darcy flow problem.

The paper is organized as follows. In the following section we present the axisymmetric Darcy flow
problem, introduce the appropriate function space setting, give the corresponding weak formula-
tion, and describe the setting for the finite element approximation. Section 3 contains the analysis
of the finite element approximation of the axisymmetric Darcy flow problem, using RTk − discPk
and BDMk+1 − discPk approximating elements. At the beginning of this section we presents the
definition of RTk and BDMk for the axisymmetric setting and establishes a commuting diagram
property. Also, we show that approximation constants which arises from applying the approximation
properties on T̂ are uniformly bounded. Two approaches are used to establish computability of the
finite element approximation. In Subsection 3.1, borrowing an idea from the approximation of the
Navier-Stokes equations, we apply grad-div stabilization to the Darcy equation in order to guarantee
coercivity of the appropriate bilinear form. Stability of the RTk−discPk and BDMk+1−discPk ap-
proximations are then established by extending the Stenberg criteria to the current setting. A priori
error estimates for the approximation are also presented. In Subsection 3.2 we use mesh dependent
norms for the velocity and pressure spaces in order to establish the computability of the approxi-
mation without applying grad-div stabilization. Again, stability of the approximation is established
by extending the Stenberg criteria, and a priori error estimates presented. Numerical experiments
are given in Section 4, and the computation results for the approximation errors compared to those
predicted theoretically.

2 Axisymmetric Darcy Equations

In this section we give the mathematical framework for modeling axisymmetric Darcy flow and
discuss the existence and uniqueness of the solution.

2.1 Problem Description

Let Ω̆ ⊂ IR3 denote a domain formed as a volume of revolution about the z-axis. With respect to
cylinderical coordinates, (r, θ, z), let Ω denote the half section of Ω̆, Ω := Ω̆∩{(r, 0, z) : r > 0, z ∈ IR}.
For the description of the boundary let Γ := ∂Ω̆∩ ∂Ω, and Γ0 the intersection of Ω̆ and the z-axis,
Γ0 := Ω̆ ∩ {(0, 0, z) : z ∈ IR}. Note that ∂Ω = Γ ∪ Γ0. In addition, assume that Ω is a simply
connected domain with a polygonal boundary. (See Figure 2.1.)
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Figure 2.1: Illustration of axisymmetric flow domain.

Consider Darcy equations (in Cartesian coordinates) in Ω̆:

µK̆−1ŭ + ∇p̆ = f̆ in Ω̆ , (2.1)

∇ · ŭ = s̆ in Ω̆ , (2.2)

ŭ · n̆ = ğ on ∂Ω̆ , (2.3)

where ŭ =

 ux
uy
uz

 = uxex + uyey + uzez, for ex, ey, ez denoting unit vectors in the x, y and

z directions, respectively. In (2.1)-(2.3) ŭ denotes the fluid’s velocity, p̆ the pressure, f̆ an external
forcing function, s̆ a fluid sink/source term, ğ the fluid outflow along the boundary, µ the fluid
viscosity, and K̆ the permeability (symmetric, positive definite) tensor of the domain. Additionally,
associated with (2.1)-(2.3) is the compatiablity condition

∫
Ω̆ s̆ dV =

∫
∂Ω̆ ğ dS. We assume that the

data f̆ , s̆, ğ are axisymmetric, giving rise to an axisymmetric solution (ŭ, p̆) [5].

For simplicity, assume that s̆ = 0, ğ = 0, K̆ = kI, where k > 0 is a constant, and ν := µ/k. (The
assumption s̆ = 0, ğ = 0 i.e. equivalent to introducing a change of variable ŭ = ŭ0 + ŭp, where
ŭp = ∇w and w satisfies ∇ · ∇w = s̆ in Ω̆, ∂w/∂n̆ = ğ on ∂Ω̆.)

Multiplying (2.1) through by a suitable smooth function v̆, v̆ · n̆|∂Ω̆ = 0 and integrating over Ω̆, and

multiplying (2.2) through by a suitable smooth function q and integrating over Ω̆ we obtain∫
Ω̆
νŭ · v̆ dV −

∫
Ω̆
p̆∇ · v̆ dV =

∫
Ω̆

f̆ · v̆ dV (2.4)∫
Ω̆
q̆∇ · ŭ dx = 0 . (2.5)

Expressing ŭ in cylinderical coordinates, ŭ =

 ur
uθ
uz

 = urer + uθeθ + uzez, and as the flow is

axisymmetric, i.e. ŭ(r, θ, z) = u(r, z), f̆(r, θ, z) = f(r, z), p̆(r, θ, z) = p(r, z), ur(0, z) = 0, uθ(0, z) =
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0, equations (2.4)(2.5) transform into∫
Ω
ν u · v r dx −

∫
Ω
p∇a · v r dx −

∫
Ω
p vr dx =

∫
Ω

f · v r dx , (2.6)∫
Ω
ν uθ vθ r dx =

∫
Ω
fθ vθ r dx , (2.7)∫

Ω
q∇a · u r dx +

∫
Ω
q ur dx = 0 , (2.8)

where u =

[
ur
uz

]
, v =

[
vr
vz

]
, f =

[
fr
fz

]
, ∇a :=

[
∂/∂r
∂/∂z

]
, and dx := dr dz .

Note that the angular flow equation for uθ is decoupled from the flow equations for ur and uz. For
simplicity assume uθ = 0.

2.2 Function Spaces and Weak Formulation

Let Θ denote a domain in IR2. For any real α and 1 ≤ p < ∞, the space αL
p(Θ) is defined as the

set of measurable functions w such that

‖w‖
αLp(Θ) :=

(∫
Θ
|w|p rα dx

)1/p

<∞ , (2.9)

where r = r(x) is the radial coordinate of x, i.e. the distance of a point x in Θ from the symmetry
axis. The subspace 1L

2
0(Θ) of 1L

2(Θ) denotes the functions q with weighted integral equal to zero:∫
Θ
q r dx = 0 .

Define the weighted Sobolev space 1W
l,p(Θ) as the space of functions in 1L

p(Θ) such that their
partial derivatives of order less that or equal to l belong to 1L

p(Θ). Associated with 1W
l,p(Θ) is

the semi-norm | · |
1W l,p(Θ) and norm ‖ · ‖

1W l,p(Θ) defined by

|w|
1W l,p(Θ) =

(
l∑

k=0

‖∂kr ∂l−kz w‖p
1Lp(Θ)

)1/p

, ‖w‖
1W l,p(Θ) =

(
l∑

k=0

|w|p
1Wk,p(Θ)

)1/p

.

When p = 2, we denote 1W
l,2(Θ) as 1H

l(Θ).

For v =

[
vr
vz

]
, let

divaxi(v) := ∇a ·v +
vr
r
, and 1H

divaxi(Θ) :=
{

v ∈
(

1L
2(Θ)

)2
: divaxi(v) ∈ 1L

2(Θ)
}
. (2.10)

In order to incorporate the boundary condition u · n = 0 on Γ, and because of axisymmetry, let

1H
divaxi
0 (Ω) :=

{
v ∈ 1H

divaxi(Ω) : v · n = 0 on ∂Ω
}
. (2.11)
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Let X := 1H
divaxi
0 (Ω) and for v = [vr, vz]

T ,

‖v‖X(Θ) =
(
‖vr‖21L2(Θ) + ‖vz‖21L2(Θ) + ‖divaxi(v)‖2

1L2(Θ)

)1/2
,

and Q := 1L
2
0(Ω) with ‖ · ‖Q = ‖ · ‖

1L2(Ω). When Θ = Ω, ‖v‖X := ‖v‖X(Θ). With X we associate
the innerproduct

〈v, w〉X :=

∫
Ω

(v ·w + divaxi(v)divaxi(w)) r dx . (2.12)

Using as the pivot space
(

1L
2(Ω)

)2
with innerproduct 〈f , g〉 :=

∫
Ω f ·g r dx , let X∗ denote the dual

space of X, i.e. X∗ is the completion of
(

1L
2(Ω)

)2
with respect to the norm

‖f‖X∗ = sup
g∈X

〈f , g〉
‖g‖X

.

For Θ a domain in IRn, n = 2, 3, we use the standard definitions for L2(Θ), L2
0(Θ), Hk(Θ), and

Hk
0 (Θ) (see [1]).

The weak axisymmetric formulation for the Darcy equations can be stated as: Given f ∈ X∗,
determine (u, p) ∈ (X ×Q) satisfying

a(u, v) − ba(p, v) = 〈f ,v〉X∗,X ∀v ∈ X , (2.13)

ba(q, u) = 0 , ∀q ∈ Q , (2.14)

where

a(u, v) :=

∫
Ω
ν u · v r dx , (2.15)

ba(q, v) :=

∫
Ω
q∇a · v r dx +

∫
Ω
q vr dx , (2.16)

and 〈·, ·〉X∗,X denotes the duality pairing between X and X∗.

2.3 Existence and Uniqueness of (u , p) satisfying (2.13)(2.14)

The existence and uniqueness of the solution to (2.13)(2.14) follows from that for Darcy equations
in IR3 (in Cartesian coordinates), and the uniqueness of the transformation of the axisymmetric
problem in IR3 to (2.13)(2.14). (See [5, 3] for an analogous discussion for the axisymmetric Stokes
problem.) In particular we note that there exists β > 0 such that

inf
q∈Q

sup
v∈X

ba(q, v)

‖q‖Q ‖v‖X
≥ β . (2.17)

3 Finite Element Approximation

We assume that Ω is a convex polygonal domain and (Th)h denotes a family of uniformly regular
triangulations of Ω satisfying:
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(i) The domain Ω is the union of the triangles of Th.

(ii) Tk ∩ Tj is a side, a node, or empty for all triangles Tk, Tj , k 6= j, in Th.

(iii) There exists a constant σ, independent of h, such that for all T ∈ Th its diameter hT is smaller
that h and T contains a circle of radius σ hT .

Additionally we assume that each triangle T in Th has at least one vertex inside Ω (i.e. not on
Γ ∩ Γ0).

For Xh ⊂ X, Qh ⊂ Q, an approximation to (2.13)(2.14) may be stated as: Given f ∈ X∗, determine
(uh, ph) ∈ (Xh ×Qh) satisfying

a(uh, v) − ba(ph, v) = 〈f ,v〉X∗,X ∀v ∈ Xh , (3.1)

ba(q, uh) = 0 , ∀q ∈ Qh . (3.2)

As with the continuous formulation, the solvability of (3.1)(3.2) for (uh, ph) is contingent on the
discrete approximation spaces satisfying, for some β > 0, the discrete LBB condition

inf
q∈Qh

sup
v∈Xh

ba(q, v)

‖q‖Q ‖v‖X
≥ β . (3.3)

Two commonly used approximation pairs for Darcy flow in the Cartesian formulation are Raviart-
Thomas RTk−discPk, and Brezzi-Douglas-Marini BDMk−discPk−1. Next we show that with minor
modification these approximation pairs are also LBB stable for the axisymmetric formulation.

For Θ ⊂ Ω, denote by Pk(Θ), P̃k(Θ), k ∈ IN∪{0}, the set of polynomials of degree ≤ k, and the set
of homogeneous polynomials of degree k on Θ, respectively. Additionally, let E(Θ) denote the set
of edges in the triangulation Th in Θ, and

Rk(∂T ) := {φ ∈ L2(∂T ) : φ|e ∈ Pk(e) , e ∈ E(T )} .

For Ω ⊂ IR2, T ∈ Th, the Raviart-Thomas space, RTk(T ), is defined by

RTk(T ) := (Pk(T ))2 +

[
r
z

]
P̃k(T ) , (3.4)

where, for q ∈ RTk(T ), n the unit outer normal on ∂T , the degrees of freedom are given by∫
E(T )

q · n p ds , p ∈ Rk(∂T ) , and

∫
T

q · p dx , p ∈ (Pk−1(T ))2 . (3.5)

For the axisymmetric formulation we redefine E(Θ) as the set of edges in Th lying in Θ which do not
lie along the symmetry axis Γ0, E(Th) := ∪T∈ThE(T ), and define

RT axik (T ) := {q ∈ RTk(T ) : q · n|Γ0 = 0} =

{[
qr
qz

]
∈ RTk(T ) : qr|Γ0 = 0

}
, (3.6)
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where the degrees of freedom are given by∫
E(T )

q · n p r ds , p ∈ Rk(∂T ) , and

∫
T

q · p r dx , p ∈ (Pk−1(T ))2 . (3.7)

The unique solvability of q ∈ RT axik (T ) in terms of the degrees of freedom (3.7) follows as in the
Cartesian case [9, 15].

The Brezzi-Douglas-Marini space, BDMk(T ), is defined by BDMk(T ) := (Pk(T ))2. For the ax-
isymmetric setting, we define

BDMaxi
k (T ) := {q ∈ BDMk(T ) : q · n|Γ0 = 0} =

{[
qr
qz

]
∈ BDMk(T ) : qr|Γ0 = 0

}
. (3.8)

The associated degrees of freedom are given by∫
E(T )

q · n p r ds , p ∈ Rk(∂T ) ,

∫
T

q · ∇ap r dx , p ∈ Pk−1(T ) , (3.9)

and

∫
T

q · curl(bT p) r dx , p ∈ Pk−2(T ) , (3.10)

where bT denotes the cubic bubble function on T .

The unique solvability of q ∈ BDMaxi
k (T ) in terms of the degrees of freedom (3.9)(3.10) follows as

in the Cartesian case [9].

The local interpolation operators are defined in an analogous manner. Specifically, for RT axik (T )
the local interpolation operator ρT is defined as follows. For s > 2, let

ρT : 1H
divaxi(T ) ∩ 1L

s(T ) −→ RT axik (T ) , (3.11)

be defined by ∫
E(T )

(q − ρTq) · n p r ds = 0 , p ∈ Rk(∂T ) , (3.12)∫
T

(q − ρTq) · p r dx = 0 , p ∈ (Pk−1(T ))2 . (3.13)

Note that, from the uniqueness of the interpolant, if q ∈ RT axik (T ) then ρTq = q.

Let RT axik (Th) := ∪T∈ThRT axik (T ), and define the global interpolation operator ρh : 1H
1(Ω) −→

RT axik (Th) as
ρh(q)|T := ρT (q|T ) , ∀T ∈ Th . (3.14)

Similar to the Cartesian case we have a commuting diagram property. Note that divaxi does not
map a (vector) polynomial space to a (scalar) polynomial space.

Let πk : 1L
2(T ) −→ Pk(T ) denote the projection operator defined by∫

T
(w − πk(w)) p r dx = 0 , ∀p ∈ Pk(T ) . (3.15)
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Lemma 1 With ρT and πk defined above, for q ∈ 1H
divaxi(T ) ∩ 1L

s(T ),

πkdivaxiρT (q) = πkdivaxiq . (3.16)

Note that (3.16) is equivalent to the commuting diagram property illustrated in Figure 3.1.

s

1 (T)

ρ
T

RTk

axi
(T)

divaxi
divaxi RTk

axi
(T)

axidiv

H1 (T) (T)L1
2divaxi

π k

π k

k (T)P

L

Figure 3.1: Commuting diagram property.

Proof Let p ∈ Pk(T ). Then,∫
T
p πkdivaxiq r dx −

∫
T
p πkdivaxiρT (q) r dx =

∫
T
p divaxi (q − ρT (q)) r dx

=

∫
T
p∇a · r (q − ρT (q)) dx

=

∫
∂T

(q − ρT (q)) · n p r ds −
∫
T

(q − ρT (q)) · ∇ap r dx

= 0 , using properties (3.12),(3.13).

For BDMaxi
k (T ), s > 2, the local interpolation operator ρ̃T : 1H

divaxi(T )∩1L
s(T ) −→ BDMaxi

k (T ) ,
is defined by∫

E(T )
(q − ρ̃Tq) · n p r ds , p ∈ Rk(∂T ) ,

∫
T

(q − ρ̃Tq) · ∇ap r dx , p ∈ Pk−1(T ) , (3.17)

and

∫
T

(q − ρ̃q) · curl(bT p) r dx , p ∈ Pk−2(T ) ,(3.18)

and the global interpolation operator ρ̃h : 1H
1(Ω) −→ BDMaxi

k (Th) defined as

ρ̃h(q)|T := ρ̃T (q|T ) , ∀T ∈ Th . (3.19)

Analogous to Lemma 1 we having a commuting diagram property.

Lemma 2 With ρ̃T and πk−1 defined above, for q ∈ 1H
divaxi(T ) ∩ 1L

s(T ),

πk−1divaxiρ̃T (q) = πk−1divaxiq . (3.20)
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Before presenting the estimate for the local interpolation error we recall the Piola transformation
and several properties.

For T ∈ Th, (see Figure 3.2) let

FT (ξ) =

[
FTr(ξ)
FTz(ξ)

]
= JT ξ +

[
r1

z1

]
, JT =

[
(r2 − r1) (r3 − r1)
(z2 − z1) (z3 − z1)

]
, and |JT | = |detJT | .

(3.21)

S

S

a1a2

a3

F
T

,
1 1

(r )z

, )
3 3

(r z

2
, )

2
(r z

a2
T

a1
T

a3
T

(0 , 1)

T

T

S1

S

S

S2

2 1

3

3

(1 , 0)

(0 , 0)

ξ

η

r

z

Figure 3.2: Mapping of triangle T to the reference triangle T̂ .

For a scalar function g : T −→ IR, let ĝ = g ◦ FT . In particular, r̂ = r ◦ FT .

The Piola transformation P : L2(T̂ ) −→ T is defined by

q̂ 7−→ q(x) = P(q̂)(x) :=
1

|JT |
JT q̂(x̂) . (3.22)

Because of the r terms which appears in the integrals in the (r, z) space we introduce the following
norm definition in order to relate norms over T to norms over T̂ . (Compare with (2.9).) For
ŵ = w ◦ FT ,

‖‖ŵ‖‖
αLp(T ) =

(∫
T̂
|ŵ|p r̂α dξ

)1/p

. (3.23)

Norms ‖‖ · ‖‖
1Wk,p(T ) and associated semi-norms, ‖| · |‖

1Wk,p(T ), are similarly defined. For a square
matrix B, ‖B‖ denotes the 2-norm of B.

Lemma 3 (See [11, 9]) For v ∈ 1H
m(T ), v̂ := v ◦ FT , q ∈ 1H

m(T ), q̂ := P−1(q), we have that
there exists C > 0 (depending on m) such that

‖v‖
1Hm(T ) ≤ C |JT |1/2 ‖J−1

T ‖
m ‖‖v̂‖‖

1Hm(T ) , (3.24)

‖‖v̂‖‖
1Hm(T ) ≤ C |JT |−1/2 ‖JT ‖m ‖v‖1Hm(T ) , (3.25)

‖q‖
1Hm(T ) ≤ |JT |−1/2 ‖J−1

T ‖
m ‖JT ‖ ‖‖q̂‖‖1Hm(T ) , (3.26)

‖‖q̂‖‖
1Hm(T ) ≤ |JT |1/2 ‖JT ‖m ‖J−1

T ‖ ‖q‖1Hm(T ) , (3.27)

10



Proof As in the Cartesian case, we have that

∇aq =
1

|JT |
JT ∇âq̂ J−1

T , and ∇a · q =
1

|JT |
∇â · q̂ .

The above properties can be verified by direct computation.

To establish the interpolation error estimate we use the fact that the interpolation operator acts
as the identity operator on polymonial of degree ≤ k, and apply the Bramble-Hilbert Lemma. To
account for the different shape and size triangles the analysis is done by mapping the triangle T to
the the reference triangle T̂ , via (3.21),(3.22), using the Bramble-Hilbert Lemma, and then mapping
back to T . The Bramble-Hilbert Lemma uses the following result.

Theorem 1 [11] There exists a constant C(Θ) such that

∀v ∈W k+1,p(Θ) , inf
p∈Pk(Θ)

‖v + p‖Wk+1,p(Θ) ≤ C(Θ) |v|Wk+1,p(Θ) . (3.28)

In the case we are considering (3.28) holds for norms ‖‖ · ‖‖
1Wk,p(T ) and associated semi-norms,

‖| · |‖
1Wk,p(T ). However the constant C(Θ) in (3.28), though not dependent on v, depends upon

the norm. Mapping each triangle T to T̂ provides a different norm and consequently a different
constant CT (T̂ ). In order to obtain an interpolation error estimate for Ω independent of Th we
need to establish that there exists a C(T̂ ) such that CT (T̂ ) ≤ C(T̂ ) , ∀T ∈ Th. We do this by
considering the triangles T ∈ TT partitioned into three different cases.

By assumption of a regular triangulation, there exists constants cJ , CJ > 0 such that

cJh
2
T ≤ |det(JT )| = |JT | ≤ CJh

2
T .

For Θ ⊂ Ω, let rmax(Θ) := max{r : (r, z) ∈ Θ̄}, and rmin(Θ) := min{r : (r, z) ∈ Θ̄} .

For constants c1, c2, c3 > 0 the following inequalities hold.

Type 1: T ∩ Γ0 is empty. For these triangles we have that

rmin(T ) ≥ c1 hT , rmax(T ) ≤ c2 rmin(T ) . (3.29)

Type 2: T ∩ Γ0 is a side. For these triangles we assume that the local counter-clockwise labeling
of T is such that the vertices S1 and S3 (equivalently aT2 ) lie on Γ0. Then, for r̂ = r ◦ FT , we
have

r̂ = r2 ξ = rmax(T ) ξ . (3.30)

Type 3: T ∩ Γ0 is a point. For these triangles we assume that the local counter-clockwise labeling
of T is such that the vertex S1 lies on Γ0. Then, for r̂ = r ◦ FT , we have

r̂ = r2 ξ + r3η , and max{r2 , r3} ≤ c3 min{r2 , r3} . (3.31)

11



Lemma 4 There exists a C(T̂ ) such that for all T ∈ Th

∀v ∈ 1W
k+1,p(T ) , inf

p∈Pk(T̂ )
‖‖v̂ + p‖‖

1Wk+1,p(T ) ≤ C(T̂ ) ‖|v̂|‖
1Wk+1,p(T ) . (3.32)

Proof :
For T of Type 1: From (3.28), ∀ v ∈W k+1,p(T̂ ) there exists C1 such that

inf
p∈Pk(T̂ )

‖v + p‖
Wk+1,p(T̂ )

≤ C1 |v|Wk+1,p(T̂ )
.

Now,

‖‖v̂ + p‖‖
1Wk+1,p(T ) ≤ rmax(T )‖v̂ + p‖

Wk+1,p(T̂ )
≤ C1 rmax(T ) |v̂|

Wk+1,p(T̂ )

≤ C1
rmax(T )

rmin(T )
‖|v̂|‖Wk+1,p(T ) ≤ c2C1 ‖|v̂|‖Wk+1,p(T ) . (3.33)

For T of Type 2: For this case, all the triangles have the same (up to a multiplicative constant)

weighted norm on T̂ . Hence for all T of this type it follows from (3.28) that there exists a constant
C2 such that (3.32) holds with C(T̂ ) = C2.

For T of Type 3: Let T̃ denote the triangle with vertices S1(0, 0), S2(1, 0), S3(1, 1), i.e. r2 = r3 = 1

in (3.31), and C3 be given by ∀ v ∈ 1W
k+1,p(T̃ )

inf
p∈Pk(T̂ )

‖v̂ + p‖
1Wk+1,p(T̃ )

≤ C3 ‖|v̂|‖
1Wk+1,p(T̃ )

.

Assume T has vertices S1(0, z1), S2(r2, z2), S3(r3, z3). Then

‖‖v̂ + p‖‖
1Wk+1,p(T ) ≤ max{r2, r3}‖‖v̂ + p‖‖

1Wk+1,p(T̃ )
≤ max{r2, r3}C3|v̂|

1Wk+1,p(T̃ )

≤ C3
max{r2, r3}
min{r2, r3}

‖|v̂|‖
1Wk+1,p(T ) ≤ c3C3 ‖|v̂|‖1Wk+1,p(T ) . (3.34)

Finally, with C(T̂ ) = max{c2C1, C2, c3C3}, the stated result follows.

For convenience we assume that Th denotes a uniform, regular triangulation of Ω, with characteristic
parameter h. The results also hold for a regular triangulation with the error estimates given element
by element involving the element parameter hT .

Corollary 1 Let u ∈ 1H
k+1(Ω) and ρh(u) be given by (3.14). Then, there exists C > 0 such that

‖u − ρh(u)‖
1L2(Ω) ≤ C hk+1 |u|

1Hk+1(Ω) . (3.35)

If, in addition divaxiu ∈ 1H
k+1(Ω) and

(∑
T∈Th |divaxiρh(u)|2

1Hk+1(T )

)1/2
< C1, then there exists

C > 0 such that
‖divaxiu − divaxiρh(u)‖

1L2(Ω) ≤ C hk+1 . (3.36)
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Proof : Estimate (3.35) follows from Lemmas 3 and 4, and the Bramble-Hilbert Lemma [6]. (See
also [11], Theorem 3.1.4.) To establish (3.36), using the triangle inequality and Lemma 1, for T ∈ Th

‖divaxiu − divaxiρh(u)‖2
1L2(T ) ≤

2‖divaxiu − πkdivaxiρh(u)‖2
1L2(T ) + 2‖divaxiρh(u) − πkdivaxiρh(u)‖2

1L2(T )

= 2‖divaxiu − πkdivaxiu‖21L2(T ) + 2‖divaxiρh(u) − πkdivaxiρh(u)‖2
1L2(T )

≤ 2C hk+1 |divaxiu|2
1Hk+1(T ) + 2C hk+1 |divaxiρh(u)|2

1Hk+1(T ) . (3.37)

Summing over the triangles T in Th we obtain (3.36).

Corollary 2 Let u ∈ 1H
k+1(Ω) and ρ̃h(u) be given by (3.19). Then, there exists C > 0 such that

‖u − ρ̃h(u)‖
1L2(Ω) ≤ C hk+1 |u|

1Hk+1(Ω) . (3.38)

If, in addition divaxiu ∈ 1H
k(Ω) and

(∑
T∈Th |divaxiρ̃h(u)|2

1Hk+1(T )

)1/2
< C1, then there exists

C > 0 such that
‖divaxiu − divaxiρ̃h(u)‖

1L2(Ω) ≤ C hk . (3.39)

3.1 Grad-Div approximation of (2.13)(2.14)

In order to numerically approximate (2.13)(2.14) we introduce a grad-div stabilization into the
approximation equations. For γ > 0 and f ∈ X∗ given, determine (uh, ph) ∈ (Xh ×Qh) satisfying

a(uh, v) + γ

∫
Ω
divaxi(uh) divaxi(v) r dx − ba(ph, v) = 〈f ,v〉X∗,X ∀v ∈ Xh , (3.40)

ba(q, uh) = 0 , ∀q ∈ Qh . (3.41)

Note that from (2.14) u satisfies∫
Ω
divaxi(uh) divaxi(v) r dx = 0 , ∀v ∈ X . (3.42)

Recently grad-div stabilization has received a good deal of attention for the approximation of fluid
flow model by the Navier-Stokes and Stokes equations [20, 21, 19, 16, 10]. For such flows it is well
known that the stabilization improves mass conservation and relaxes the effect of the pressure error
on the velocity error.

Suppose that the approximation spaces Xh and Qh are inf-sup stable, i.e. satisfy (3.3). Let

Zh := {v ∈ Xh : ba(q,v) = 0 , ∀q ∈ Qh} . (3.43)
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Then, the existence and unique of the solution to (3.40)(3.41) is equivalent to the existence and
uniqueness of uh satisfying

aγ(uh, v) := a(uh, v) + γ

∫
Ω
divaxi(uh) divaxi(v) r dx = 〈f ,v〉X∗,X ∀v ∈ Zh . (3.44)

Observe that

(i) (Coercivity): aγ(v , v) ≥ c‖v‖2X , where c = min{ν, γ} , (3.45)

(ii) (Continuity): aγ(u , v) ≤ C‖u‖X ‖v‖X , where C = ν + γ . (3.46)

Theorem 2 For γ > 0, there exists a unique solution (uh , ph) to (3.40)(3.41).

Proof Properties (3.45)(3.46) guarantee the existence and uniqueness of uh satisfying (3.44), and
(3.3) then guarantees the existence and uniqueness of ph satisfying (3.40 ).

Remark: Note that the coercivity of the operator aγ(· , ·) with respect to the X-norm is a result
of the added grad-div stabilization term.

For the error bound between (u, p) satisfying (2.13)(2.14) and (uh , ph) satsifying (3.40)(3.41) we
have the following.

Theorem 3 (Error Bound) Assume that (Xh, Qh) satisfy (3.3) and that (u, p), (uh, ph) are given
by (2.13)(2.14) and (3.40)(3.41), respectively. Then, there exists a constant C > 0 (depending on
γ) such that

‖u − uh‖X + ‖p − ph‖Q ≤ C

(
inf

wh∈Xh
‖u − wh‖X + inf

qh∈Qh
‖p − qh‖Q

)
. (3.47)

Proof : Subtracting (3.44) from (2.13), using 3.42, we obtain

aγ(u − uh, v) − ba(p− q, v) = 0 ∀v ∈ Zh , q ∈ Qh .

The error estimate (3.47) is then established in an analogous manner as the standard error analysis
for the finite element approximation to Stokes equations [8, 12].

3.1.1 Stability of RT axik − discPk and BDMaxi
k − discPk−1

To establish the stability of approximations to (3.40)(3.41) using RT axik − discPk and BDMaxi
k −

discPk−1 elements, for k ≥ 1, we use the macro element technique of Stenberg [23, 25], see also
[13]. The condition that k ≥ 1 implies that Xh contains the space of continuous piecewise linear
elements.

Lemma 5 Stenberg’s macro element stability criteria given in [25] extends to the inf−sup condition
(3.3).
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Proof : The proof follows in an analogous manner to that of Theorem 2.1 in [25]. The existence of
an interpolant w̃ ∈ Xh to w such that∑

T∈Th

h−2
T ‖w − w̃‖2

1L2(T ) +
∑

e∈E(Th)

h−1
e

∫
e
|w − w̃|2 r ds

1/2

≤ C3|w|1H1 ,

(see (2.12) in [25]), follows from Theorem 1 and Corollary 1 in [3].

Remark: The condition that Xh contains the space of continuous piecewise linear elements is used
in [3].

Theorem 4 For k ≥ 1, with Xh −Qh given by RT axik − discPk or BDMaxi
k − discPk−1 the inf-sup

stability condition (3.3) is satisfied.

Proof : We take as the macro element, M , two triangles sharing a common side, i.e. M = T1 ∪ T2,
with e = T1 ∩ T2.

Let X0,M = {v ∈ Xh : v · n|∂M = 0} ,
QM = {p|M : p ∈ Qh} ,

and NM = {p ∈ QM : ba(p , v) = 0 , ∀v ∈ X0,M} .

The stability follows if NM is one dimensional, consisting of functions which are constant on M .

Note that for v ∈ X0,M , p ∈ NM

0 = ba(p , v) =

∫
T1

v · ∇ap r dx +

∫
T2

v · ∇ap r dx +

∫
e
v · n [p] r ds , (3.48)

where [p] denotes the jump in p along e.

Proceeding as in [26], for i = 1, 2, choose vi ∈ X0,M such that its support lies in Ti and all other
degrees of freedom vanish except for those given by (3.7)(b), for Xh = RT axik , or (3.9)(b), for
Xh = BDMaxi

k . From (3.48) it then follows that p is constant on T1 and T2, i.e. p|T1 = c1, and
p|T2 = c2. Thus, again from (3.48) we have that

0 = (c1 − c2)

∫
e
v · n r ds ∀v ∈ X0,M .

As from (3.7)(a), or (3.9)(a),
∫
e v · n r ds denotes a degree a freedom, then c1 = c2, i.e. NM is one

dimensional, consisting of functions which are constant on M .

To establish the stability of RT axi0 − discP0 we proceed in a similar manner as in [6], pg. 148.

Lemma 6 The mapping
π0 divaxi : RT axi0 −→ discP0

is surjective.
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Proof : Given f ∈ discP0, let f̆ denoting the lifting of f from Ω to Ω̆. Then, we have that there
exists ŭ ∈ H2(Ω̆) ∩H1

0 (Ω̆) such that ∆ŭ = f̆ . Set q̆ := ∇(x,y,z)ŭ, and let q denote the reduction
of q̆ to Ω. Then, ∫

T
f r dx =

∫
T
divaxiq r dx

=

∫
T
divaxiρTq r dx , (using Lemma 1)

=

∫
T
π0 divaxiρTq r dx .

Since π0 divaxiρTq and f are constant on T , then it follows that π0 divaxiρTq = f .

Corollary 3 The approximating pair (Xh, Qh) = (RT axi0 , discP0) satisfies the inf-sup condition
(3.3).

Proof : Note that the mapping discP0 −→ RT axi0 constructed in the proof of Lemma 6 is bounded.
Therefore, from Fortin’s criteria, it follows that the inf-sup condition is satisfied.

For the approximation to (3.40)(3.41) with (Xh, Qh) given by (RT axik , discPk), and (BDMaxi
k , discPk−1),

we have the following a priori error estimates.

Corollary 4 For (Xh, Qh) = (RT axik , discPk), u ∈ (1H
k+1(Ω))2, with divaxiu ∈ 1H

k+1(Ω) and(∑
T∈Th |divaxiρh(u)|2

1Hk+1(T )

)1/2
< C1, p ∈ 1H

k+1(Ω), satisfying (2.13)(2.14); (uh, ph) ∈ (Xh, Qh),

satisfying (3.40)(3.41); we have that there exists C > 0 such that

‖u − uh‖X + ‖p − ph‖1L2(Ω) ≤ C hk+1 . (3.49)

Proof : From (3.47), using

inf
qh∈Qh

‖p − qh‖Q = inf
qh∈Qh

‖p − qh‖1L2(Ω) ≤ C hk+1‖p‖
1Hk+1(Ω) ,

together with Corollary 1 we obtain (3.49).

Corollary 5 For (Xh, Qh) = (BDMaxi
k , discPk−1), u ∈ (1H

k(Ω))2, with divaxiu ∈ 1H
k(Ω) and(∑

T∈Th |divaxiρ̃h(u)|2
1Hk+1(T )

)1/2
< C1, p ∈ 1H

k(Ω), satisfying (2.13)(2.14); (uh, ph) ∈ (Xh, Qh),

satisfying (3.40)(3.41); we have for k ≥ 1 that there exists C > 0 such that

‖u − uh‖X + ‖p − ph‖1L2(Ω) ≤ C hk . (3.50)
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3.2 Direct Approximation of (2.13)(2.14)

The analysis presented above for the grad-div approximation of (2.13)(2.14) breaks down for γ = 0
as, from (3.45), aγ(·, ·) is no longer coercive with respect to ‖·‖X . To overcome this loss of coercivity
with respect to ‖ · ‖X , following the approach of [2, 24], we introduce mesh dependent norms. Let

Xh := {v : v ∈ 1L
2(T ), v · n ∈ 1L

2(e), ∀T ∈ Th, ∀e ∈ E(Th), v · n = 0 on ∂Ω}, (3.51)

and
Qh := {q ∈ 1L

2
0(T ) : ∇aq ∈ 1L

2(T ), [q] ∈ 1L
2(e), ∀T ∈ Th, ∀e ∈ E(Th)} , (3.52)

where [q]|e(x) = q+(x) − q−(x), with

q±(x) = lim
ε→0±

q(x + εn) , x ∈ e ,

and n a specified normal associated with e.

With these spaces we associate the norms

‖v‖0,h =

∑
T∈Th

∫
T
|v|2 r dx +

∑
e∈E(Th)

he

∫
e
|v · n|2 r ds

1/2

, (3.53)

‖q‖1,h =

∑
T∈Th

∫
T
|∇aq|2 r dx +

∑
e∈E(Th)

h−1
e

∫
e
[q]2 r ds

1/2

. (3.54)

By a scaling argument [2] it is straightforward to show that there exists c > 0 such that

c ‖v‖0,h ≤ ‖v‖1L2(Ω) ≤ ‖v‖0,h , ∀v ∈ Xh , (3.55)

and that their exists C > 0 such that

‖q‖1,h ≤

∑
T∈Th

∫
T
|∇aq|2 r dx + h−2

T

∫
T
q2 r dx

1/2

, ∀q ∈ Qh . (3.56)

With respect to the ‖ · ‖0,h and ‖ · ‖1,h norms,

a(u , v) ≤ ν‖u‖
1L2(Ω) ‖v‖1L2(Ω) ≤ ν‖u‖0,h ‖v‖0,h , (3.57)

a(u , u) ≥ ν‖u‖2
1L2(Ω) ≥ c2 ν‖u‖20,h , (3.58)

b(q , v) =

∫
Ω
q∇a · rv dx =

∑
T∈Th

∫
T

v · ∇aq r dx +
∑

e∈E(Th)

∫
e
v · n [q] r ds

≤ ‖v‖0,h ‖q‖1,h . (3.59)

In view of (3.57)-(3.59), we have that provided Xh ⊂ Xh, Qh ⊂ Qh, satisfy

inf
q∈Qh

sup
v∈Xh

b(q, v)

‖v‖0,h ‖q‖1,h
≥ β , (3.60)

there exists a unique (uh , ph) ∈ Xh ×Qh satisfying (3.1)(3.2), for all (v , q) ∈ Xh ×Qh, and

‖u − uh‖1L2(Ω) + ‖p − ph‖1,h ≤ C

(
inf

v∈Xh
‖u − v‖

1L2(Ω) + inf
q∈Qh

‖p − q‖1,h
)
. (3.61)
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3.2.1 Stability of RT axik − discPk and BDMaxi
k − discPk−1

Again, in order to show that the approximation pairs RT axik − discPk and BDMaxi
k − discPk−1 are

stable with respect to (3.60), we begin by verifying that the macro element technique of Stenberg
also applies to (3.60). In view of

c‖ · ‖0,h ≤ ‖ · ‖1L2(Ω) ≤ ‖ · ‖X ≤ ‖ · ‖1H1(Ω) ,

the issue to be investigated is the influence of the norm ‖ · ‖1,h.

Following the notation in [13], assume that for each Th ∈ (Th)h the triangles can be grouped together
to form macro elements Mj , j = 1, . . . ,m, which form a macro partition, Mh, of Ω. Let Πh denote
the projection, with respect to the innerproduct 〈q, p〉 :=

∫
Ω q p r dx, from Qh onto the space

QCh := {q ∈ Q : q|M is constant ∀M ∈Mh} . (3.62)

Lemma 7 For Qh = discP0, q ∈ Qh, we have that

‖q‖
1L2(Ω) ≤ C

 ∑
e∈E(Th)

h−1
e

∫
e
[q]2 r ds

1/2

. (3.63)

Proof : First, note the following generalized Poincaré-Friedrichs inequality established by Brenner
in [7]. For Ψ ⊂ IR3, a connected open polyhedral domain, P a partition of Ψ into polyhedra, S(P,Ψ)
the set of all the (open) faces common to two subdomains in P, H1(Ψ,P) = {ζ ∈ L2(Ψ) : ζD =
ζ|D ∈ H1(D), ∀D ∈ P} , then

‖ζ‖2L2(Ψ) ≤ C

∑
D∈P

∫
D
|∇ζ|2 dx dy dz +

∑
σ∈S(P,Ψ)

(diamσ)−1 ‖Π0,σ[σ]‖2L2(σ) +

(∫
Ψ
ζ dx dy dz

)2
 ,

(3.64)
where Π0,σ denotes the L2 orthogonal projection from L2(σ) onto P0(σ), the space of constant
functions on σ.

By rotation around the symmetry axis, we lift Ω ⊂ IR2 to Ω̆ ⊂ IR3. The triangulation Th of Ω
induces a partition PR of Ω̆, with each triangle T ∈ Th generating a volume of revolution with cross
section T . Next, with respect to the parameter τ , we form a refinement of PR by dividing the
volumes of revolution up with respect to a partition of [0, 2π), denoted by PR,τ . The partition PR,τ
is not a polyhedral partition of Ω̆ as its elements, with respect to the symmetry axis, have curved
front and back faces. Let P̃R,τ denote the polyhedral partition obtained from PR,τ by replacing the
curved front and back faces with planar surfaces.

For D ∈ PR,τ , let D̃ denote the corresponding element in P̃R,τ , and mD = (a, b, c) denote the center
of gravity of D. We assume that τ is sufficiently small such that mD lies in D.

For q ∈ Qh define two extension to Ω̆ by q̆(x, y, z) := q((x2 + y2)1/2, z) and q̃|D̃ = q̆(mD). Note
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that q̃ ∈ H1(Ω̆, P̃R,τ ), and

lim
τ→0
‖q̃‖L2(Ω̆) = ‖q̆‖L2(Ω̆) (3.65)

lim
τ→0

∑
σ∈S(P̃R,τ ,Ω̆)

(diamσ)−1 ‖[q̃]‖2L2(σ) =
∑

σ∈S(PR,τ ,Ω̆)

(diamσ)−1 ‖[q̆]‖2L2(σ)

=
∑

σ∈S(PR,Ω̆)

(diamσ)−1 ‖[q̆]‖2L2(σ) , (3.66)

lim
τ→0

∫
Ω̆
q̃ dx dy dz =

∫
Ω̆
q̆ dx dy dz = 0 . (3.67)

Applying (3.64) to q̃, taking the limit as τ goes to zero, and using (3.65)-(3.67) we obtain

‖q̆‖2
L2(Ω̆)

≤ C

 ∑
σ∈S(PR,Ω̆)

(diamσ)−1 ‖[q̆]‖2L2(σ)

1/2

,

from which (3.63) follows.

Lemma 8 Stenberg’s macro element stability criteria given in [23] extends to the inf−sup condition
(3.60).

Proof : The extension of Stenberg’s macro element criteria [23] to the axisymmetric setting for the
Stokes equations is given in [13]. Of the two key lemmas used in the proof, the first lemma (Lemma
1 in [13]) holds for arbitrary norms on Xh and Qh. The proof of the second lemma requires that,
for q0

h ∈ Qh given, the construction of a v0 ∈ X satisfying

∇a · v0 +
1

r
v0
r = Πhq

0
h , and ‖v0‖X ≤

1

β
‖Πhq

0
h‖Q . (3.68)

As, from (3.63), ‖Πhq
0
h‖Q ≤ C‖Πhq

0
h‖1,h, and ‖v0‖0,h ≤ C‖v0‖X the stated result follows.

Theorem 5 For k ≥ 1, with Xh −Qh given by RT axik − discPk or BDMaxi
k − discPk−1 the inf-sup

stability condition (3.60) is satisfied.

Proof : For k ≥ 1 Xh = RT axik or BDMaxi
k contains the space of continuous piecewise (with respect

to Th) polynomials of degree k in each coordinate. Hence, from Lemma 8, the macro element criteria
can be applied. For k ≥ 2 the same argument used in the proof of Theorem 4 can be applied to
establish the stability of Xh−Qh. In case k = 1 a macro element consisting of two adjacent triangles
is not sufficient in order to apply Lemma 8. In this case we must have that the macro elements
satisfy: If γ is the common part of two macro elements then γ is connected and contains at least
two edges of triangles in Th. (See [14] for an illustration.) Nonetheless, on such macro elements an
analogous argument as used in the proof of Theorem 4 can be applied to establish the stability of
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Xh −Qh.

In order to obtain an optimal error for the ‖u − uh‖1L2(Ω), and ‖p − ph‖1L2(Ω), we require the
following additional assumption and lemma.

Additional assumption: Let z ∈
(

1H
2(Ω)

)2
, s ∈ 1H

2(Ω), vh ∈ RT axi1 or vh ∈ BDMaxi
2 , qh ∈ discP1,

and g := (z− vh), h := (s− qh). Then the solution (µ, ξ) ∈ X ×Q of

a(w, µ) − ba(ξ, w) = 〈g,w〉X∗,X ∀w ∈ X , (3.69)

ba(t, µ) =

∫
Ω
h t r dx , ∀t ∈ Q , (3.70)

satisfies divaxi(µ) ∈ 1H
1(T ), ξ ∈ 1H

2(T ) , ∀T ∈ Th and∑
T∈Th

|divaxi(µ)|2
1H1(T ) + |ξ|2

1H1(T ) + |ξ|2
1H2(T )

1/2

≤ C ‖g‖
1L2(Ω) + ‖h‖

1L2(Ω) . (3.71)

Lemma 9 For T ∈ Th, f ∈ 1H
1(T ), there exists C > 0 such that∑

e∈∂T
h−1
e

∫
e
f2 r ds ≤ C

(
h−2
T ‖f‖

2
1L2(T ) + |f |2

1H1(T )

)
. (3.72)

Proof : The proof follows as in the proof of the Trace Theorem, [6].

For the approximations (uh , ph) we have the following a priori error estimates.

Corollary 6 For u ∈ (1H
k+1(Ω))2, p ∈ 1H

k+1(Ω), satisfying (2.13)(2.14), uh ∈ RT axik = Xh,
ph ∈ discPk = Qh, satisfying (3.1)(3.2), we have for k ≥ 1 that there exists C > 0 such that

‖u − uh‖1L2(Ω) + ‖p − ph‖1,h ≤ C hk . (3.73)

With the additional regularity assumption (3.71),

‖u − uh‖1L2(Ω) + ‖p − ph‖1L2(Ω) ≤ C hk+1 . (3.74)

Proof : Note that as k ≥ 1, p ∈ C(Ω), From [3], and (3.56)

inf
q∈Qh

‖p − q‖1,h ≤ C inf
q∈Qh

∑
T∈Th

∫
T
|∇a(p − q)|2 r dx + h−2

T

∫
T

(p − q)2 r dx

1/2

≤ C hk ‖p‖
1Hk+1(Ω) . (3.75)

Estimate (3.73) then follows from (3.75) and (3.35).
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To establish (3.74), consider (µ, ξ) satisfying (3.69)(3.70) for g = u − uh, h = p − ph. With
the choices w = u − uh, t = p − ph, combining (3.69)(3.70) with (2.13)(2.14) and (3.1)(3.2), we
obtain for (v, q) ∈ Xh ×Qh

‖u − uh‖21L2(Ω) + ‖p − ph‖21L2(Ω)

= a(u − uh, µ− v) − ba(ξ, u − uh) + ba(p− ph, v) − ba(p− ph, µ) + ba(q,u − uh)

= a(u − uh, µ− v) − ba(ξ − q, u − uh) − ba(p− ph, µ − v) . (3.76)

For each of the terms of the RHS of (3.76):

a(u − uh, µ− v) ≤ ‖u − uh‖1L2(Ω) ‖µ− v‖
1L2(Ω) (3.77)

ba(p− ph, µ − v) ≤ ‖p− ph‖1L2(Ω) ‖divaxi(µ− v)‖
1L2(Ω) (3.78)

ba(ξ − q, u − uh) =
∑
T∈Th

∫
∂T

(u− uh) · n (ξ − q) r ds +

∫
T
∇a(ξ − q) · (u− uh) r dx

≤ C ‖u− uh‖0,h

∑
T∈Th

h−1
e

∫
∂T

(ξ − q)2 r ds +

∫
T
|∇a(ξ − q)|2 r dx

1/2

≤ C ‖u− uh‖0,h

∑
T∈Th

h−2
T ‖ξ − q‖

2
1L2(T ) + |ξ − q|2

1H1(T )

1/2

. (3.79)

Combining (3.76)-(3.79), using (3.73) and the fact that (v, q) ∈ Xh ×Qh is arbitrary,

‖u − uh‖21L2(Ω) + ‖p − ph‖21L2(Ω)

≤ C
(
‖u − uh‖1L2(Ω) + ‖p − ph‖1L2(Ω)

)
·

(‖µ− v‖
1L2(Ω) + (

∑
T∈Th

‖divaxi(µ− v)‖2
1L2(T ) + h−2

T ‖ξ − q‖
2
1L2(T ) + |ξ − q|2

1H1(T ) )1/2 )

≤ Chk (
∑
T∈Th

h2
T |divaxi(µ)|2

1H1(T ) + h2
T |ξ|21H1(T ) + h2

T |ξ|21H2(T ) )1/2

≤ Chk+1
(
‖u − uh‖1L2(Ω) + ‖p − ph‖1L2(Ω)

)
, (3.80)

where in the last two steps we have used the additional regularity assumption.

Similarly, we have the following error estimates when using (Xh, Qh) = (BDMaxi
k , discPk−1).

Corollary 7 For u ∈ (1H
k(Ω))2, p ∈ 1H

k(Ω), satisfying (2.13)(2.14), uh ∈ BDMaxi
k = Xh,

ph ∈ discPk−1 = Qh, satisfying (3.1)(3.2), we have for k ≥ 2 that there exists C > 0 such that

‖u − uh‖1L2(Ω) + ‖p − ph‖1,h ≤ C hk−1 . (3.81)

With the additional regularity assumption (3.71),

‖u − uh‖1L2(Ω) + ‖p − ph‖1L2(Ω) ≤ C hk . (3.82)

21



4 Numerical Results

In this section we present results of numerical experiments for the approximation of (2.13)(2.14)
using RT axik − discPk, k = 0, 1, 2, and BDMaxi

k − discPk−1, k = 1, 2, approximating elements.
Two examples are considered. For the first example the true solution for the velocity is a quadratic
(vector) function, and the true pressure is a (scalar) quadratic function. The second example is a
modification of the Taylor-Green vortex flow problem, a prototypal problem in Navier-Stokes flow
approximation.

For the grad-div stabilized approximation, discussed in Section 3.1, γ = 1 is used in Example 1, and
for Example 2 results using γ = 1, and γ = 10 are presented. Results from the direct approximation,
discussed in Section 3.2, corresponding to γ = 0, are given in Tables 4.2 and 4.5. In the tables n/a is
used to indicate that the theoretical results established in Sections 3.1.1 and 3.2.1 are not applicable.

For both examples we take Ω = (0, 1/2)× (−1/2, 1/2), Γ0 = {0} × [−1/2, 1/2], Γ = ∂Ω\Γ0.

Example 1
For the true solution we use

u(r, z) =

[
rz

0.25− z2

]
, and p(r, z) = rz + 2r + 3z − 2/3 . (4.1)

Note that for the RT axi2 − discP2 approximating elements, u ∈ Xh and p ∈ Qh.

The numerical results are presented in Tables 4.1 and 4.2. An illustration of the computational
mesh corresponding to h = 1/6 is given in Figure 4.1.
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Figure 4.1: Computational mesh corresponding to h = 1/6.

Example 2
We consider a modified Taylor-Green vortex flow problem

u(r, z) =

[
−r cos(ωπr) sin(ωπz)

− 2
ωπ cos(ωπr) cos(ωπz) + r sin(ωπr) cos(ωπz)

]
,

p(r, z) = sin(ωπz)(− cos(ωπr) + 2ωπr sin(ωπr)) .

The computations are performed for ω = 1. A plot of the velocity field u, and the pressure p, is
given in Figures 4.2 and 4.3, respectively.

The numerical results are presented in Tables 4.3, 4.4, and 4.5.
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h ‖u− uh‖1L2(Ω) Cvg. rate ‖u− uh‖X Cvg. rate ‖p− ph‖Q Cvg. rate

γ = 1 Xh = RT axi0 Qh = discP0

1/4 1.629E-2 1.01 2.020E-2 0.94 5.151E-2 1.00
1/6 1.083E-2 1.00 1.382E-2 0.93 3.432E-2 1.00
1/8 8.117E-3 1.00 1.058E-2 0.93 2.573E-2 1.00
1/10 6.496E-3 1.00 8.606E-3 0.92 2.059E-2 1.00
1/12 5.415E-3 7.271E-3 1.715E-2

Pred. 1.0 1.0 1.0

γ = 1 Xh = RT axi1 Qh = discP1

1/4 7.279E-4 1.97 1.112E-3 1.92 1.843E-4 2.00
1/6 3.272E-4 1.98 5.111E-4 1.93 8.194E-5 2.00
1/8 1.852E-4 1.99 2.937E-4 1.93 4.609E-5 2.00
1/10 1.188E-4 2.00 1.909E-4 1.93 2.950E-5 2.00
1/12 8.246E-5 1.343E-4 2.048E-5

Pred. 2.0 2.0 2.0

γ = 1 Xh = RT axi2 Qh = discP2

1/4 1.531E-13 1.585E-13 1.521E-14
1/6 4.892E-13 5.128E-13 2.181E-14
1/8 2.614E-12 2.701E-12 3.296E-14
1/10 5.398E-12 5.592E-12 1.306E-13
1/12 1.438E-11 1.451E-11 1.580E-13

Pred.

γ = 1 Xh = BDMaxi
1 Qh = discP0

1/4 2.279E-2 0.90 4.107E-2 0.90 5.137E-2 1.00
1/6 1.582E-2 0.93 2.846E-2 0.94 3.424E-2 1.00
1/8 1.212E-2 0.94 2.174E-2 0.95 2.567E-2 1.00
1/10 9.824E-3 0.95 1.757E-2 0.96 2.054E-2 1.00
1/12 8.259E-3 1.474E-2 1.711E-2

Pred. 1.0 1.0 1.0

γ = 1 Xh = BDMaxi
2 Qh = discP1

1/4 8.300E-5 1.99 1.420E-4 1.99 1.835E-4 2.00
1/6 3.704E-5 2.00 6.342E-5 1.99 8.170E-5 2.00
1/8 2.086E-5 2.00 3.574E-5 2.00 4.599E-5 2.00
1/10 1.336E-5 2.00 2.289E-5 2.00 2.944E-5 2.00
1/12 9.282E-6 1.591E-5 2.045E-5

Pred. 2.0 2.0 2.0

Table 4.1: Example 1, γ = 1.

5 Conclusion

In this paper we establish the stability and a priori error estimates for the RT axik − discPk and
BDMaxi

k −discPk−1 approximating pairs for axisymmetric Darcy flow. The numerical computations
confirm the predicted rates of convergence for the approximation errors.
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h ‖u− uh‖1L2(Ω) Cvg. rate ‖p− ph‖Q Cvg. rate ‖p− ph‖1,h Cvg. rate

γ = 0 Xh = RT axi0 Qh = discP0

1/4 1.260E-2 1.05 5.140E-2 1.00 1.874E+0 -0.01
1/6 8.225E-3 1.03 3.424E-2 1.00 1.880E+0 -0.01
1/8 6.121E-3 1.02 2.568E-2 1.00 1.884E+0 0.00
1/10 4.879E-3 1.01 2.054E-2 1.00 1.886E+0 0.00
1/12 4.058E-3 1.712E-2 1.887E+0

Pred. n/a n/a n/a

γ = 0 Xh = RT axi1 Qh = discP1

1/4 6.670E-4 2.00 1.839E-4 2.00 1.765E-2 0.99
1/6 2.969E-4 2.00 8.178E-5 2.00 1.182E-2 0.99
1/8 1.671E-4 2.00 4.601E-5 2.00 8.880E-3 0.99
1/10 1.070E-4 2.00 2.945E-5 2.00 7.113E-3 1.00
1/12 7.433E-5 2.046E-5 5.932E-3

Pred. 2.0 2.0 1.0

γ = 0 Xh = RT axi2 Qh = discP2

1/4 4.254E-14 1.276E-14 1.227E-12
1/6 1.371E-13 1.279E-14 1.836E-12
1/8 5.344E-13 1.384E-14 2.561E-12
1/10 4.017E-13 1.326E-14 3.197E-12
1/12 2.893E-12 2.340E-14 4.203E-12

Pred.

γ = 0 Xh = BDMaxi
1 Qh = discP0

1/4 1.295E-1 0.74 5.156E-2 1.00 1.862E+0 -0.02
1/6 9.593E-2 0.79 3.432E-2 1.00 1.874E+0 -0.01
1/8 7.636E-2 0.82 2.571E-2 1.00 1.879E+0 -0.01
1/10 6.360E-2 0.84 2.056E-2 1.00 1.883E+0 -0.01
1/12 5.461E-2 1.713E-2 1.885E+0

Pred. n/a n/a n/a

γ = 0 Xh = BDMaxi
2 Qh = discP1

1/4 4.771E-4 1.90 1.836E-4 2.00 1.765E-2 0.99
1/6 2.208E-4 1.91 8.173E-5 2.00 1.182E-2 0.99
1/8 1.276E-4 1.91 4.600E-5 2.00 8.880E-3 0.99
1/10 8.329E-5 1.91 2.945E-5 2.00 7.113E-3 1.00
1/12 5.874E-5 2.045E-5 5.932E-3

Pred. 2.0 2.0 1.0

Table 4.2: Example 1, γ = 0.
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1 Qh = discP0

1/4 1.095E-1 0.77 8.037E-2 1.00 3.523E+0 -0.01
1/6 8.006E-2 0.81 5.351E-2 1.00 3.543E+0 -0.01
1/8 6.343E-2 0.83 4.011E-2 1.00 3.551E+0 -0.01
1/10 5.266E-2 0.85 3.208E-2 1.00 3.555E+0 0.00
1/12 4.509E-2 2.673E-2 3.558E+0

Pred. n/a n/a n/a

γ = 0 Xh = BDMaxi
2 Qh = discP1

1/4 1.381E-2 1.87 6.426E-3 2.01 4.982E-1 1.00
1/6 6.474E-3 1.90 2.849E-3 2.00 3.327E-1 1.00
1/8 3.753E-3 1.91 1.601E-3 2.00 2.498E-1 1.00
1/10 2.452E-3 1.92 1.024E-3 2.00 1.999E-1 1.00
1/12 1.729E-3 7.112E-4 1.666E-1

Pred. 2.0 2.0 1.0

Table 4.5: Example 2, γ = 0.
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